Skip to main content
Log in

Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II

  • Physiology Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cerebral cell volume regulatory mechanisms are activated by sustained disturbances in plasma osmolality. Acute hypernatremia causes a predictable shrinkage of brain cells due to the sudden imposition of a plasma-to-cell osmolal gradient. However, during chronic hypernatremia cerebral cell volume is maintained close to the normal range as a result of the accumulation of electrolytes and organic osmolytes including myo-inositol, taurine, glutamine, glycerophosphorylcholine, and betaine. The increased cytosolic level of these molecules is generally accomplished via increased activity of sodium (Na+)-dependent cotransport systems. The slow dissipation of these additional osmotically active solutes from the cell during treatment of hypernatremia necessitates gradual correction of this electrolyte abnormality. Acute hyponatremia leads to cerebral cell swelling and severe neurological dysfunction. However, prolonged hyponatremia is associated with significant reductions in brain cell electrolyte and organic osmolyte content so that cerebral cell volume is restored to normal. While acute hyponatremia can be treated with the administration of moderate doses of hypertonic saline in order to control seizure activity, chronic hyponatremia should be corrected slowly in order to prevent subsequent neurological deterioration. If the rate of correction exceeds 0.5 mmol/l per hour, or if the total increment in serum [Na+] exceeds 25 mmol/l in the first 48 h of therapy, then there is an increased risk of the development of cerebral demyelinating lesions. Chronic hyperglycemia activates the brain cell volume regulatory adaptations in the same manner as hypernatremia. Therefore, during the treatment of diabetic ketoacidosis, it is imperative to restore normoglycemia gradually in order to prevent the occurrence of cerebral edema. It is possible that excessive administration of electrolyte-free solutions and high doses of insulin may increase the risk of this complication. While there are some data to suggest that brain cell size is disturbed during acute uremia, additional work is necessary to clarify the role of cerebral cell volume regulation during acute and chronic uremia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson CJ, Baylis PH (1988) Osmoregulation of thirst. J Endocrinol 117: 155–157

    PubMed  Google Scholar 

  2. Kleeman CR (1989) Metabolic coma. Kidney Int 36: 1142–1158

    PubMed  Google Scholar 

  3. Finberg L (1973) Hypernatremic (hypertonic) dehydration in infants. N Engl J Med 289: 196–198

    PubMed  Google Scholar 

  4. Finberg L (1957) Experimental studies of the mechanisms producing hypocalcemia in hypernatremic states. J Clin Invest 36: 434–439

    PubMed  Google Scholar 

  5. Singhal PC, Abramovici M, Venkatesan J (1990) Rhabdomyolysis in the hyperosmolal state. Am J Med 88: 9–12

    PubMed  Google Scholar 

  6. Thurston JH, Hauhart RE, Schulz DW (1983) Effect of chronic hypernatremic dehydration and rapid rehydration on brain carbohydrate, energy, and amino acid metabolism in weanling mice. J Neurochem 40: 240–245

    PubMed  Google Scholar 

  7. Moder KG, Hurley DL (1990) Fatal hypernatremia from exogenous salt intake: report of a case and review of the literature. Mayo Clin Proc 65: 1587–1594

    PubMed  Google Scholar 

  8. Pollack AS, Arieff AI (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239: F195-F205

    PubMed  Google Scholar 

  9. Chan PH, Fishman RA (1979) Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality. Brain Res 161: 293–301

    Article  PubMed  Google Scholar 

  10. Finberg L, Luttrell C, Redd H (1959) Pathogenesis of lesions in the nervous system in hypernatremic states. II. Experimental studies of gross anatomic changes and alterations of chemical composition of the tissues. Pediatrics 23: 46–53

    PubMed  Google Scholar 

  11. Trachtman H, Del Pizzo R, Sturman JA, Huxtable RJ, Finberg L (1988) Taurine and osmoregulation. II. Administration of taurine analogues affords cerebral osmoprotection during chronic hypernatremic dehydration. Am J Dis Child 142: 1194–1198

    PubMed  Google Scholar 

  12. Trachtman H, Barbour R, Sturman JA, Finberg L (1988) Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. Pediatr Res 23: 35–39

    PubMed  Google Scholar 

  13. Cserr HF, DePasquale M, Patlack CS (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253: F522-F529

    PubMed  Google Scholar 

  14. Pullen RGL, DePasquale M, Cserr HF (1987) Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol 253: F538-F545

    PubMed  Google Scholar 

  15. Star RA (1990) Hyperosmolar states. Am J Med Sci 300: 402–412

    PubMed  Google Scholar 

  16. Heilig CW, Stromski ME, Blumenfeld JD, Lee JP, Gullans SR (1989) Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol 257: F1108-F1116

    PubMed  Google Scholar 

  17. Lien YHH, Shapiro JI, Chan L (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85: 1427–1435

    PubMed  Google Scholar 

  18. Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P (1991) The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Sci 49: 677–688

    PubMed  Google Scholar 

  19. Sturman JA, Rassin DK, Gaull GE, Cote LJ (1980) Taurine in developing rhesus monkey brain. J Neurochem 35: 304–310

    PubMed  Google Scholar 

  20. Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561–1568

    PubMed  Google Scholar 

  21. Trachtman H, Gullans SR (1991) Developing rats display enhanced accumulation of cerebral organic osmolytes (OO) during hypernatremia (H): role of taurine (abstract). J Am Soc Nephrol (in press)

  22. Bannister A, Matin-Siddiqi SA, Hatcher GW (1975) Treatment of hypernatremic dehydration in infancy. Arch Dis Child 50: 179–186

    PubMed  Google Scholar 

  23. Hogan GR, Dodge PR, Gill SR, Pickering LK, Master S (1983) The incidence of seizures after rehydration of hypernatremic rabbits with intravenous orad libitum oral fluids. Pediatr Res 18: 340–345

    Google Scholar 

  24. Feig PU, McCurdy DK (1977) The hypertonic state. N Engl J Med 297: 1444–1454

    PubMed  Google Scholar 

  25. Schrier RW (1988) Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med 319: 1065–1072, 1127–1134

    PubMed  Google Scholar 

  26. Chung HM, Kluge R, Schrier RW, Anderson RJ (1987) Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med 83: 905–908

    PubMed  Google Scholar 

  27. Rose BD (1986) New approach to disturbances in the plasma sodium concentration. Am J Med 81: 1033–1040

    PubMed  Google Scholar 

  28. Beck LH (1979) Hyporicemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med 301: 528–530

    PubMed  Google Scholar 

  29. Weisberg LS (1989) Pseudohyponatremia: a reappraisal. Am J Med 86: 315–318

    PubMed  Google Scholar 

  30. Verbalis JG (1989) Hyponatremia. Clin Endocrinol Metab (Bailliere's) 3: 499–530

    Google Scholar 

  31. Robinson AG, Roberts MM, Evron WA, Verbalis JG, Sherman TG (1990) Hyponatremia in rats induces downregulation of vasopressin synthesis. J Clin Invest 86: 1023–1029

    PubMed  Google Scholar 

  32. Sterns RH (1991) “Slow” correction of hyponatremia: a break with tradition? Kidney 23: 1–5

    Google Scholar 

  33. Baylis PH (1983) Posterior pituitary function in health and disease. Clin Endocrinol Metab 12: 747–770

    PubMed  Google Scholar 

  34. Cheng JC, Zikos D, Skopicki HA, Peterson DR, Fisher KA (1990) Long-term neurologic outcome in psychogenic water drinkers with severe symptomatic hyponatremia: the effect of rapid correction. Am J Med 88: 561–566

    PubMed  Google Scholar 

  35. Ayus JC, Krothapapalli PK, Armstrong DL (1985) Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am J Physiol 248: F711-F719

    PubMed  Google Scholar 

  36. Sterns RH, Thomas DJ, Herndon RM (1989) Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int 35: 69–75

    PubMed  Google Scholar 

  37. Melton JE, Patlack CS, Pettigrew KD, Cserr HF (1987) Volume regulatory loss of Na, Cl, K from rat brain during acute hyponatremia. Am J Physiol 252: F661-F669

    PubMed  Google Scholar 

  38. Verbalis JG, Drutarosky MD (1988) Adaptation to chronic hypoosmolality in rats. Kidney Int 34: 351–360

    PubMed  Google Scholar 

  39. Adler S, Simplaceanu V (1989) Effect of acute hyponatremia on rat brain pH and rat brain buffering. Am J Physiol 256: F113-F119

    PubMed  Google Scholar 

  40. Rotin D, Grinstein S (1989) Impaired cell volume regulation in Na+−H+ exchange-deficient mutants. Am J Physiol 257: C1158-C1165

    PubMed  Google Scholar 

  41. Lomneth R, Gruenstein EI (1989) Energy-dependent cell volume maintenance in UC-11MG human astrocytomas. Am J Physiol 257: C817-C824

    PubMed  Google Scholar 

  42. Verbalis JG, Gullans SR (1990) Decreased brain concentrations of multiple organic osmolytes accompanies volume regulatory electrolyte losses during chronic hyponatremia (abstract). J Am Soc Nephrol 1: 709

    Google Scholar 

  43. Lien YHH, Shapiro J, Chan L (1991) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia: implications for the pathogenesis of central pontine myelinolysis. J Clin Invest 88: 303–309

    PubMed  Google Scholar 

  44. Thurston JH, Hauhart RE (1987) Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: possible clinical significance. Life Sci 40: 2539–2542

    PubMed  Google Scholar 

  45. Trachtman H, Futterweit S (1989) Taurine (T) transport is decreased in synaptosomes isolated from rats with acute hyponatremia (AH) (abstract). Clin Res 37: 868A

    Google Scholar 

  46. Messert B, Orrison WW, Hawkins MJ, Quaglieri CE (1979) Central pontine myelinolysis: considerations on etiology, diagnosis and treatment. Neurology 29: 147–160

    PubMed  Google Scholar 

  47. Adams RD, Victor M, Mancall EL (1959) Central pontine myelinolysis. Arch Neurol 81: 154–172

    Google Scholar 

  48. Sterns RH (1987) Severe symptomatic hyponatremia: treatment and outcome. An Intern Med 107: 656–664

    Google Scholar 

  49. Berl T (1990) Treating hyponatremia: damned if we do and damned if we don't. Kidney Int 37: 1006–1018

    PubMed  Google Scholar 

  50. Norenberg MD, Papendick RE (1984) Chronicity of hyponatremia as a factor in experimental myelinolysis. Ann Neurol 15: 544–547

    PubMed  Google Scholar 

  51. Ayus JC, Krothapalli RK, Armstrong DL, Norton HJ (1989) Symptomatic hyponatremia in rats: effect of treatment on mortality and brain lesions. Am J Physiol 257: F18-F22

    PubMed  Google Scholar 

  52. Kleinschmidt-DeMasters BK, Norenberg MD (1981) Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211: 1068–1070

    PubMed  Google Scholar 

  53. Illowsky BP, Laureno R (1987) Encephalopathy and myelinolysis after rapid correction of hyponatremia. Brain 110: 855–867

    PubMed  Google Scholar 

  54. Varbalis JG, Martinez AJ (1991) Neurological and neuropathological sequelae of correction of chronic hyponatremia. Kidney Int 39: 1274–1282

    PubMed  Google Scholar 

  55. Mickel HS, Oliver CN, Starke-Reed PE (1990) Protein oxidation and myelinolysis occur in brain following rapid correction of hyponatremia. Biochem Biophys Res Commun 172: 92–97

    PubMed  Google Scholar 

  56. Rojiani AM, Prineas JW, Cho ES (1987) Protective effects of steroids in electrolyte-induced demyelination. J Neuropathol Exp Neurol 46: 495–504

    PubMed  Google Scholar 

  57. Oh MS, Choi KC, Uribarri J, Sher J, Rao C, Carroll HJ (1990) Prevention of myelinolysis in rats by dexamethasone or colchicine. Am J Nephrol 10: 158–161

    PubMed  Google Scholar 

  58. Soupart A, Stenuit A, Perier O, Decaux G (1991) Limits of brain tolerance to daily increments in serum sodium in chronically hyponatremic rats treated with hypertonic saline or urea: advantages of urea. Clin Sci 80: 77–84

    PubMed  Google Scholar 

  59. Brunner JE, Redmond JM, Haggar AM, Kruger DF, Elias SB (1990) Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol 27: 61–66

    PubMed  Google Scholar 

  60. Arieff AI (1986) Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 314: 1529–1535

    PubMed  Google Scholar 

  61. Ayus JC, Krothapalli KK, Arieff AI (1987) Treatment of symptomatic hyponatremia and its relation to brain damage; a prospective study. N Engl J Med 317: 1190–1195

    PubMed  Google Scholar 

  62. Ayus JC, Olivero JJ, Frommer JP (1982) Rapid correction of severe hyponatremia with intravenous hypertonic saline solution. Am J Med 72: 43–48

    PubMed  Google Scholar 

  63. Laureno R, Illowsky Karp B (1988) Pontine and extrapontine myelinolysis following rapid correction of hyponatremia. Lancet I: 1439–1441

    Google Scholar 

  64. Sarnaik AP, Meert K, Hackbarth R, Fleischmann L (1991) Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med 19: 758–762

    PubMed  Google Scholar 

  65. Estol CJ, Faris AA, Martinez AJ, Ahdab-Barmada M (1989) Central pontine myelinolysis after live transplantation. Neurology 39: 493–498

    PubMed  Google Scholar 

  66. Krane EJ (1987) Diabetic ketoacidosis. Pediatr Clin North Am 34: 935–960

    PubMed  Google Scholar 

  67. Guisado R, Arieff AI (1974) Neurologic manifestations of diabetic comas: correlation with biochemical alterations in the brain. Metabolism 24: 665–679

    Google Scholar 

  68. McCurdy DK (1970) Hyperomolar hyperglycemic non-ketotic diabetic coma. Med Clin North Am 54: 683–699

    PubMed  Google Scholar 

  69. Van Der Meulen JA, Klip A, Grinstein S (1987) Possible mechanism for cerebral edema in diabetic ketoacidosis. Lancet II: 306–308

    Google Scholar 

  70. Harris GD, Lohr JW, Fiordalisi I, Acara M (1991) Brain osmoregulation during extreme and moderate dehydration in a rat model of severe DKA (abstract). Pediatr Res 29: 193A

    Google Scholar 

  71. Trachtman H, Futterweit S, Sturman JA Cerebral taurine transport is increased during streptozotocin-induced diabetes in rats. Diabetes (in press)

  72. Rosenbloom AL (1990) Intracerebral crises during treatment of keto acidosis. Diabetes Care 13: 22–33

    PubMed  Google Scholar 

  73. Krane EJ, Rockoff MA, Wallman JK, Wolfsdorf JI (1985) Subclinical brain swelling in children during treatment of diabetic ketoacidosis. N Eng J Med 312: 1147–1151

    Google Scholar 

  74. Duck SC, Wyatt DT (1988) Factors associated with brain herniation in the treatment of diabetic ketoacidosis. J Pediatr 113: 10–14

    PubMed  Google Scholar 

  75. Harris GD, Fiordalisi I, Harris WL, Mosovich LL, Finberg L (1990) Minimizing the risk of brain herniation during treatment of diabetic ketoacidemia: a retrospective and prospective study. J Pediatr 117: 22–31

    PubMed  Google Scholar 

  76. Trachtman H, Futterweit S (1991) Cerebral taurine transport is increased in acute, but not chronic ranal failure (abstract). Pediatr Res 29: 353A

    Google Scholar 

  77. Manis T, Friedman EA, (1979) Dialytic therapy for irreversible uremia. N Engl J Med 301: 1260–1265, 1321–1328

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trachtman, H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol 6, 104–112 (1992). https://doi.org/10.1007/BF00856852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00856852

Key words

Navigation