Skip to main content

Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation

  • Chapter
Applied and Computational Control, Signals, and Circuits

Abstract

In recent years reduced-order modeling techniques based on Krylov-subspace iterations especially the Lanczos algorithm and the Arnoldi process have become popular tools to tackle the large-scale time-invariant linear dynamical systems that arise in the simulation of electronic circuits. This chapter reviews the main ideas of reduced-order modeling techniques based on Krylov subspaces and describes their use in circuit simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Alexandro, Jr. Stable partial Padé approximations for reduced-order transfer functions.IEEE Trans. Automat. Control, 29:159–162, 1984.

    Article  MATH  Google Scholar 

  2. J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández. A Lanczos-type algorithm for multiple starting vectors. Numerical Analysis Manuscript No. 96–18, Bell Laboratories, Murray Hill, NJ, 1996. Also available on-line fromhttp://www.cm.bell-labs.com/cs/doc/96 .

    Google Scholar 

  3. D. F. Anastasakis, N. Gopal, and L. T. Pillage. Enhancing the stability of asymptotic waveform evaluation for digital interconnect circuit applications.IEEE Trans. Computer-Aided Design, 13:729–736, 1994.

    Article  Google Scholar 

  4. B. D. O. Anderson and S. Vongpanitlerd.Network Analysis and Synthesis.Prentice-Hall, Englewood Cliffs, NJ, 1973.

    Google Scholar 

  5. W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.Quart. Appl. Math., 9:17–29, 1951.

    MathSciNet  MATH  Google Scholar 

  6. Z. Bai. P. Feldmann, and R. W. Freund. Stable and passive reduced-order models based on partial Padé approximation via the Lanczos process. Numerical Analysis Manuscript No. 97–3–10, Bell Laboratories, Murray Hill, NJ, 1997. Also available on-line fromhttp://www.cm.bell-labs.com/cs/doc/97 .

    Google Scholar 

  7. Z. Bai. P. Feldmann, and R. W. Freund. How to make theoretically passive reduced-order models passive in practice. InProc. IEEE 1998 Custom Integrated Circuits Conference, pages 207–210. IEEE, 1998.

    Google Scholar 

  8. Z. Bai and R. W. Freund. Eigenvalue-based characterization and test for positive realness of transfer functions. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.

    Google Scholar 

  9. Z. Bai and R. W. Freund. A band symmetric Lanczos process based on coupled recurrences with applications in model-order reduction. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.

    Google Scholar 

  10. Z. Bai and Q. Ye. Error estimation of the Padé approximation of transfer functions via the Lanczos process. Manuscript, 1997.

    Google Scholar 

  11. G. A. Baker Jr. and P. Graves-Morris.Padé Approximants, 2nd Edition. Cambridge University Press, New York, NY, 1996.

    Book  Google Scholar 

  12. D. L. Boley. Krylov space methods on state-space control models.Circuits Systems Signal Process., 13:733–758, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. L. Boley and G. H. Golub. The nonsymmetric Lanczos algorithm and controllability.Systems Control Lett.,16:97–105, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. H. Bosgra. On parametrizations for the minimal realization problem.Systems Control Lett.,3:181–187, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. H. Bosgra and A. J. J. Van der Weiden. Input-out invariants for linear multivariable systems.IEEE Trans. Automat. Control, 25:2036, 1980.

    Article  Google Scholar 

  16. J. E. Bracken. Padé approximation of linear circuit responses via passive circuit synthesis. Manuscript, 1995.

    Google Scholar 

  17. C. Brezinski. Partial Padé approximation.J. Approx. Theory, 54:210–233, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bultheel and M. Van Barel. Padé techniques for model reduction in linear system theory: a survey.J. Comput. Appl. Math., 14:401–438, 1986.

    Article  MathSciNet  Google Scholar 

  19. P. K. Chan. Comments on “Asymptotic waveform evaluation for timing analysis”.IEEE Trans. Computer-Aided Design, 10:1078–1079, 1991.

    Article  Google Scholar 

  20. R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems.SIAM Rev., 38:427–482, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Celik and A. C. Cangellaris. Simulation of dispersive multiconductor transmission lines by Padé approximation via the Lanczos process.IEEE Trans. Microwave Theory Tech., 44:2525–2535, 1996.

    Article  Google Scholar 

  22. M. Celik and A. C. Cangellaris. Simulation of multiconductor transmission lines using Krylov subspace order-reduction techniques.IEEE Trans. Computer-Aided Design, 16:485–496, 1997.

    Article  Google Scholar 

  23. M. Celik, O. Ocali, M. A. Tan, and A. Atalar. Pole-zero computation in microwave circuits using multipoint Padé approximation.IEEE Trans. Circuits and Systems—I: Fundamental Theory and Applications, 42:6–13, 1995.

    Article  Google Scholar 

  24. C.-T. Chen.Linear System Theory and Design. Oxford University Press, New York, NY, 1984.

    Google Scholar 

  25. E. Chiprout and M. S. Nakhla.Asymptotic Waveform Evaluation.Kluwer Academic Publishers, Norwell, MA, 1994.

    Book  Google Scholar 

  26. R. R. Craig, Jr. and A. L. Hale. Block-Krylov component synthesis method for structural model reduction.J. Guidance Control Dynamics, 11:562–570, 1988.

    Article  MATH  Google Scholar 

  27. R. R. Craig, Jr. and T.-J. Su. A review of model reduction methods for structural control design. In C. L. Kirk and J. L. Junkins, editorsDynamics of Flexible Structures in Space, pages 121–134. Computational Mechanics Publications, Southampton, UK, 1990.

    Google Scholar 

  28. J. K. Cullum. Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems.BIT, 36:470–493, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. K. Cullum and W. E. Donath. A block Lanczos algorithm for computing theqalgebraically largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices. InProc. 1974 IEEE Conference on Decision and Control, pages 505–509. IEEE Press, New York, NY, 1974.

    Google Scholar 

  30. J. K. Cullum and R. A. Willoughby.Lanczos Algorithms for Large Symmetric Eigenvalue Computations Volume 1 Theory.Birkhäuser, Basel, Switzerland, 1985.

    Google Scholar 

  31. J. K. Cullum and R. A. Willoughby.Lanczos Algorithms for Large Symmetric Eigenvalue Computations Volume 2 Programs.Birkhäuser, Basel, Switzerland, 1985.

    Google Scholar 

  32. J. K. Cullum and R. A. Willoughby. A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices. In J. K. Cullum and R. A. Willoughby, editorsLarge Scale Eigenvalue Problems, pages 193–240. North-Holland, Amsterdam, The Netherlands, 1986.

    Chapter  Google Scholar 

  33. L. Dai. Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer-Verlag, Berlin, Germany, 1989.

    Google Scholar 

  34. J. Davidse.Analog Electronic Circuit Design. Prentice Hall, New York, NY, 1991.

    Google Scholar 

  35. I. S. Duff, A. M. Erisman, and J. K. Reid.Direct Methods for Sparse Matrices.Oxford University Press, Oxford, UK, 1989.

    Google Scholar 

  36. A. E. Dunlop, W. J. Evans, and L. A. Rigge. Managing complexity in IC design—past, present, and future.Bell Labs Technical Journal, 2:103–125, 1997.

    Article  Google Scholar 

  37. I. M. Elfadel and D. D. Ling. Zeros and passivity of Arnoldi-reducedorder models for interconnect networks. InProc. 34nd ACM/IEEE Design Automation Conf., pages 28–33. Association for Computing Machinery, Inc., New York, NY, 1997.

    Google Scholar 

  38. I. M. Elfadel and D. D. Ling. A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 66–71. IEEE Computer Society Press, Los Alamitos, CA, 1997.

    Google Scholar 

  39. P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. InProceedings of EURO-DAC ‘84 with EURO-VHDL ‘84, pages 170–175. IEEE Computer Society Press, Los Alamitos, CA, 1994.

    Google Scholar 

  40. P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process.IEEE Trans. Computer-Aided Design, 14:639–649, 1995.

    Article  Google Scholar 

  41. P. Feldmann and R. W. Freund. Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm. InProc. 32nd ACM/IEEE Design Automation Conf., pages 474–479. Association for Computing Machinery, Inc., New York, NY, 1995.

    Google Scholar 

  42. P. Feldmann and R. W. Freund.Numerical Simulation of Electronic Circuits: State-of-the-Art Techniques and Challenges.Course Notes, 1995. Available on-line from http://www.cm.belllabs.com/who/freund

    Google Scholar 

  43. P. Feldmann and R. W. Freund. Interconnect-delay computation and signal-integrity verification using the SyMPVL algorithm. InProc. 1997 European Conference on Circuit Theory and Design, pages 408–413. European Circuit Society, 1997.

    Google Scholar 

  44. P. Feldmann and R. W. Freund. Circuit noise evaluation by Padé approximation based model-reduction techniques. InTechnical Digest of the 1997 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 132–138. IEEE Computer Society Press, Los Alamitos, CA, 1997.

    Google Scholar 

  45. L. Fortuna, G. Nunnari, and A. Gallo.Model Order Reduction Techniques with Applications in Electrical Engineering.Springer-Verlag, London, UK, 1992.

    Book  Google Scholar 

  46. R. W. Freund. Computation of matrix Padé approximations of transfer functions via a Lanczos-type process. In C. K. Chui and L. L. Schumaker, editorsApproximation Theory VIII Vol. 1: Approximation and Interpolation, pages 215–222. World Scientific Publishing Co., Inc., Singapore, 1995.

    Google Scholar 

  47. R. W. Freund. Computing minimal partial realizations via a Lanczostype algorithm for multiple starting vectors. InProc. 36th IEEE Conference on Decision and Control, pages 4394–4399. IEEE, Piscataway, NJ, 1997.

    Chapter  Google Scholar 

  48. R. W. Freund. Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. Numerical Analysis Manuscript No. 98–3–06, Bell Laboratories, Murray Hill, NJ, 1998. Also available on-line from http://www.cm.belllabs.com/cs/doc/98

    Google Scholar 

  49. R. W. Freund. An extension of the Lanczos-Padé connection to the matrix case. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.

    Google Scholar 

  50. R. W. Freund and P. Feldmann. Small-signal circuit analysis and sensitivity computations with the PVL algorithm.IEEE Trans. Circuits and Systems—II: Analog and Digital Signal Processing, 43:577–585, 1996.

    Article  MATH  Google Scholar 

  51. R. W. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. InTechnical Digest of the 1996 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 280–287. IEEE Computer Society Press, Los Alamitos, CA, 1996.

    Google Scholar 

  52. R. W. Freund and P. Feldmann. Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation. InProceedings of DATE’98.IEEE Computer Society Press, Los Alamitos, CA, 1998.

    Google Scholar 

  53. R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems.Acta Numerica, 1:57–100, 1992.

    Article  MathSciNet  Google Scholar 

  54. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices.SIAM J. Sci. Comput., 14:137–158, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  55. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems.Numer. Math., 60:315–339, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on coupled two-term recurrences.SIAM J. Sci. Comput., 15:313–337, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. W. Freund and N. M. Nachtigal. Software for simplified Lanczos and QMR algorithms.Appl. Numer. Math., 19:319–341, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. W. Freund and N. M. Nachtigal. QMRPACK: a package of QMR algorithms.ACM Trans. Math. Software,22:46–77, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Gallivan, E. J. Grimme, and P. Van Dooren. Asymptotic waveform evaluation via a Lanczos method.Appl. Math. Lett., 7:75–80, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Gallivan, E. J. Grimme, and P. Van Dooren. A rational Lanczos algorithm for model reduction.Numer. Algorithms, 12:33–63, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Geerts. Invariant subspaces and invertibility properties for singular systems: the general case.Linear Algebra Appl., 183:61–88, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  62. K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds.Internat. J. Control, 39:1115–1193, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  63. I. Gohberg, M. A. Kaashoek, and L. Lerer. On minimality in the partial realization problem.Systems Control Lett.,9:97–104, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  64. G. H. Golub and J. Kautsky. Calculation of Gauss quadrature with multiple free and fix knots.Numer. Math., 41:147–163, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  65. G. H. Golub and C. F. Van LoanMatrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  66. W. B. Gragg. Matrix interpretations and applications of the continued fraction algorithm.Rocky Mountain J. Math., 4:213–225, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  67. W. B. Gragg and A. Lindquist. On the partial realization problem.Linear Algebra Appl.,50:277–319, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  68. E. J. Grimme, D. C. Sorensen, and P. Van Dooren. Model reduction of state space systems via an implicitly restarted Lanczos method.Numer. Algorithms, 12:1–31, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. X. Huang. Padé approximation of linear(ized) circuit responses. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 1990.

    Google Scholar 

  70. I. M. Jaimoukha. A general minimal residual Krylov subspace method for large-scale model reduction.IEEE Trans. Automat. Control, 42:1422–1427, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  71. I. M. Jaimoukha and E. M. Kasenally. Oblique projection methods for large scale model reduction.SIAM J. Matrix Anal. Appl., 16:602–627, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  72. I. M. Jaimoukha and E. M. Kasenally. Implicitly restarted Krylov subspace methods for stable partial realizations.SIAM J. Matrix Anal. Appl., 18:633–652, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Kailath.Linear Systems.Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

    Google Scholar 

  74. J. Kautsky and S. Elhay. Gauss quadratures and Jacobi matrices for weight functions not of one sign.Math. Comp.,43:543–550, 1984.

    MathSciNet  MATH  Google Scholar 

  75. K. J. Kerns, I. L. Wemple, and A. T. Yang. Stable and efficient reduction of substrate model networks using congruence transformations. InTechnical Digest of the 1995 IEEE/ACM International Conference on Computer-Aided Design, pages 207–214. IEEE Computer Society Press, Los Alamitos, CA, 1995.

    Google Scholar 

  76. K. J. Kerns and A. T. Yang. Preservation of passivity during RLC network reduction via split congruence transformations. InProc. 84nd ACM/IEEE Design Automation Conf., pages 34–39. Association for Computing Machinery, Inc., New York, NY, 1997.

    Google Scholar 

  77. K. J. Kerns and A. T. Yang. Stable and efficient reduction of large, multiport RC networks by pole analysis via congruence transformations.IEEE Trans. Computer-Aided Design, 16:734–744, 1997.

    Article  Google Scholar 

  78. H. M. Kim and R. R. Craig, Jr. Structural dynamics analysis using an unsymmetric block Lanczos algorithm.Internat. J. Numer. Methods Engrg., 26:2305–2318, 1988.

    Article  MATH  Google Scholar 

  79. H. M. Kim and R. R. Craig, Jr. Computational enhancement of an unsymmetric block Lanczos algorithm.Internat. J. Numer. Methods Engrg., 30:1083–1089, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  80. S.-Y. Kim, N. Gopal, and L. T. Pillage. Time-domain macromodels for VLSI interconnect analysis.IEEE Trans. Computer-Aided Design, 13:1257–1270, 1994.

    Article  Google Scholar 

  81. C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.J. Res. Nat. Bur. Standards, 45:255–282, 1950.

    Article  MathSciNet  Google Scholar 

  82. C. Lanczos. Solution of systems of linear equations by minimized iterations.J. Res. Nat. Bur. Standards, 49:33–53, 1952.

    Article  MathSciNet  Google Scholar 

  83. V. L. Mehrmann. The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences, vol. 163. Springer-Verlag, Berlin, Germany, 1991.

    Book  Google Scholar 

  84. H.-D. Meyer and S. Pal. A band-Lanczos method for computing matrix elements of a resolvent.J. Chem. Phys.91:6195–6204, 1989.

    Article  MathSciNet  Google Scholar 

  85. B. C. Moore. Principal component analysis in linear systems: controllability, observability, and model reduction.IEEE Trans. Automat. Control, 26:17–31, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  86. T. V. Nguyen and J. Li. Multipoint Padé approximation using a rational block Lanczos algorithm. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 72–75. IEEE Computer Society Press, Los Alamitos, CA, 1997.

    Google Scholar 

  87. A. A. Nikishin and A. Yu. Yeremin. Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers, I: general iterative scheme.SIAM J. Matrix Anal. Appl., 16:1135–1153, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  88. A. Odabasioglu. Provably passive RLC circuit reduction. M.S. thesis, Carnegie Mellon University, Pittsburgh, PA, 1996.

    Google Scholar 

  89. A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromodeling algorithm. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 58–65. IEEE Computer Society Press, Los Alamitos, CA, 1997.

    Google Scholar 

  90. D. P. O’leary.The block conjugate gradient algorithm and related methods.Linear Algebra Appl., 29:293–322, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  91. B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices.Math. Comp.,44:105–124, 1985.

    MathSciNet  MATH  Google Scholar 

  92. L. T. Pileggi. Coping with RC(L) interconnect design headaches. InTechnical Digest of the 1995 IEEE/ACM International Conference on Computer-Aided Design, pages 246–253. IEEE Computer Society Press, Los Alamitos, CA, 1995.

    Google Scholar 

  93. L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing analysis.IEEE Trans. Computer-Aided Design, 9:352–366, 1990.

    Article  Google Scholar 

  94. V. Raghavan, J. E. Bracken, and R. A. Rohrer AWESpice: A general tool for the accurate and efficient simulation of interconnect problems. InProc. 29th ACM/IEEE Design Automation Conf., pages 87–92. Association for Computing Machinery, Inc., New York, NY, 1992.

    Chapter  Google Scholar 

  95. V. Raghavan, R. A. Rohrer, L. T. Pillage, J. Y. Lee, J. E. Bracken, and M. M. Alaybeyi. AWE—inspired. InProc. IEEE Custom Integrated Circuits Conference, 1993.

    Google Scholar 

  96. C. L. Ratzlaff and L. T. Pillage. RICE: rapid interconnect circuit evaluation using AWE.IEEE Trans. Computer-Aided Design, 13:763–776, 1994.

    Article  Google Scholar 

  97. R. A. Rohrer, L. Nagel, R. Meyer, and L. Weber. Computationally efficient electronic-circuit noise calculations.IEEE J. Solid-State Circuits, 6:204–213, 1971.

    Article  Google Scholar 

  98. A. E. Ruehli. Equivalent circuit models for three-dimensional multiconductor systems.IEEE Trans. Microwave Theory Tech., 22:216–221, 1974.

    Article  Google Scholar 

  99. A. E. Ruehli, editor.Circuit Analysis Simulation and Design Part 1: General Aspects of Circuit Analysis and Design.North-Holland, Amsterdam, The Netherlands, 1986.

    Google Scholar 

  100. A. E. Ruehli, editor.Circuit Analysis Simulation and Design Part 2: VLSI Circuit Analysis and Simulation.North-Holland, Amsterdam, The Netherlands, 1987.

    Google Scholar 

  101. A. Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices.Math. Comp., 33:680–687, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  102. A. Ruhe. The two-sided Arnoldi algorithm for nonsymmetric eigen-value problems. In B. Kágström and A. Ruhe, editorsProceedings Pite Haysbad, Lecture Notes in Mathematics, vol. 973, pages 104–120. Springer-Verlag, Berlin, Germany, 1983

    Google Scholar 

  103. A. Ruhe. Rational Krylov sequence methods for eigenvalue computation.Linear Algebra Appl., 58:391–405, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  104. A. Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: matrix pairs.Linear Algebra Appl., 197/198:283–295, 1994.

    Article  MathSciNet  Google Scholar 

  105. Y. Saad.Numerical Methods for Large Eigenvalue Problems.Halstead Press, New York, NY, 1992.

    Google Scholar 

  106. Y. Saad.Iterative Methods for Sparse Linear Systems.PWS Publishing Company, Boston, MA, 1996.

    Google Scholar 

  107. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  108. A. L. Sangiovanni-Vincentelli. Circuit simulation. In P. Antognetti, D. O. Pederson, and D. de Man, editorsComputer Design Aids for VLSI Circuits, pages 19–112. Sijthoff & Noordhoff International Publishers B.V., Alphen aan den Rijn, The Netherlands, 1981.

    Google Scholar 

  109. Y. Shamash. Stable reduced-order models using Padé-type approximations.IEEE Trans. Automat. Control, 19:615–616, 1974.

    Article  MATH  Google Scholar 

  110. Y. Shamash. Model reduction using the Routh stability criterion and the Padé approximation technique.Internat. J. Control, 21:475–484, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  111. L. M. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits. InTechnical Digest of the 1996 IEEE/ACM International Conference on Computer-Aided Design, pages 288–294. IEEE Computer Society Press, Los Alamitos, CA, 1996.

    Google Scholar 

  112. L. M. Silveira, M. Kamon, and J. White. Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures. InProc. 1995 European Design and Test Conference, pages 534–538. IEEE Computer Society Press, Los Alamitos, CA, 1995.

    Chapter  Google Scholar 

  113. T.-J. Su. A decentralized linear quadratic control design method for flexible structures. Ph.D. thesis, The University of Texas at Austin, Austin, TX, 1989.

    Google Scholar 

  114. T.-J. Su and R. R. Craig, Jr. Model reduction and control of flexible structures using Krylov vectors.J. Guidance Control Dynamics, 14:260–267, 1991.

    Article  Google Scholar 

  115. A. J. Tether. Construction of minimal linear state-variable models from finite input-output data.IEEE Trans. Automat. Control, 15:427–436,1970.

    Article  MathSciNet  Google Scholar 

  116. N. P. van der Meijs and T. Smedes. Accurate interconnect modeling: towards multi-million transistor chips as microwave circuits. InTechnical Digest of the 1996 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 244–251. IEEE Computer Society Press, Los Alamitos, CA, 1996.

    Google Scholar 

  117. H. A. van der Vorst and G. H. Golub. 150 years old and still alive: eigenproblems. In I. S. Duff and G. A. Watson, editorsThe State of the Art in Numerical Analysis, pages 93–119. Clarendon Press, Oxford, UK, 1997.

    Google Scholar 

  118. A. J. J. van der Weiden and O. H. Bosgra. The determination of structural properties of a linear multivariable system by operations of system similarity.Internat. J. Control, 32:489–537, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  119. A. van der Ziel.Noise in Solid State Devices and Circuits.John Wiley & Sons, Inc., New York, NY, 1986.

    Google Scholar 

  120. C. de Villemagne and R. E. Skelton. Model reductions using a projection formulation.Internat. J. Control, 46:2141–2169, 1987.

    Article  MathSciNet  Google Scholar 

  121. J. Vlach and K. Singhal.Computer Methods for Circuit Analysis and Design, 2. Van Nostrand Reinhold, New York, NY, 1993.

    Google Scholar 

  122. M. R. Wohlers.Lumped and Distributed Passive Networks.Academic Press, New York, NY, 1969.

    Google Scholar 

  123. G.-L. Xu and A. Bultheel Matrix Padé approximation: Definitions and properties.Linear Algebra Appl.,137/138:67–136, 1990.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freund, R.W. (1999). Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation. In: Datta, B.N. (eds) Applied and Computational Control, Signals, and Circuits. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0571-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0571-5_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6822-2

  • Online ISBN: 978-1-4612-0571-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics