Skip to main content

Abstract

This chapter is dedicated to photophysical properties of SWNTs on the surface of which such very important biological molecule as a DNA was adsorbed. This unique polymer can solubilize carbon nanotubes, occur separation of certain nanotube species, provide carbon nanotube biocompatibility and facilitates different applications of this nanomaterial. The photophysical characterization of these DNA-functionalized carbon nanotubes contributes to understanding of the fundamental mechanisms of carbon nanotube photophysics as well as gives some insight into the influence of biorganic environment on their photophysical properties. The important feature of this polymer is its different structural flexibility/stiffness, depending on nucleotides and/or their sequence, its ability to form double, triple and more complicated structures. All of these features influence substantially the polymer conformation at its adsorption on the nanotube surface: for example, some polymers can wrap round a nanotube, others adsorb along a tube in a stretching conformation, third ones form globules near the nanotube. It was demonstrated that photophysical properties of nanotubes with the polymer adsorbed, being in a water environment, strongly depend on the polymer conformation, which it acquires at adsorption. Therefore, in the first part of this chapter attention is focused on the analysis of different structures of the polymer, formed upon its adsorption on the nanotube, on the determination of the interaction energy between them, as all these have direct influence on spectral properties of nanotubes. In subsequent two parts of the chapter, devoted to absorption spectroscopy and photoluminescence of nanotubes with the polymer adsorbed (mainly with DNA), the current insight into these physical phenomena observed in carbon nanotubes is made. Thus, the influence of the ππ stacking interaction between nitrogen bases and the nanotube surface on absorption spectra of nanotubes and DNA was demonstrated as well the change of the electron structure of the nanotube in the exciting state, due to the helical negative sugar-phosphatic backbone of the polymer wrapped around nanotubes, was analyzed. The analysis of novel studying, directed to clarify the influence of interfaced organic and biological molecules as well as pH of water suspension on the quantum yield of photoluminescence of semiconducting nanotubes was executed too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, C. (ed.): Nanomaterials for Biosensors. Wiley-VCH Verlag GmbH&Co./KgaA, Weinheim (2007)

    Google Scholar 

  2. Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.): Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Berlin (2008)

    Google Scholar 

  3. Javey, A., Kong, J. (eds.): Carbon Nanotube Electronics. Springer, New York (2008)

    Google Scholar 

  4. Léonard, F.: The Physics of Carbon Nanotube Devices. William Andrew, Norwich (2009)

    Google Scholar 

  5. Guldi, D.M., Martın, N. (eds.): Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Google Scholar 

  6. Nakashima, N., Okuzono, S., Murakami, H., Nakai, T., Yoshikawa, K.: DNA dissolves single-walled carbon nanotubes in water. Chem. Lett. 32, 456–457 (2003)

    Article  Google Scholar 

  7. Zheng, M., Jagota, A., Semke, E., Diner, B., Mclean, R., Lustig, S., Richardson, R., Tassi, N.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  Google Scholar 

  8. O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, Ch., Wang, Y., Haros, E., Kuper, C., Tour, J., Ausman, K.D., Smalley, R.E.: Reversible water solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001)

    Article  Google Scholar 

  9. Zheng, M., Jagota, A., Strano, M., Santos, A., Barone, P., Chou, S., Diner, B., Dresselhaus, M., Mclean, R., Onoa, G., Samsonidze, G., Semke, E., Usrey, M., Walls, D.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)

    Article  Google Scholar 

  10. Tu, X., Manohar, S., Jagota, A., Zheng, M.: DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009)

    Article  Google Scholar 

  11. Yarotski, D.A., Kilina, S.V., Talin, A.A., Tretiak, S., Prezhdo, O.V., Balatsky, A.V., Taylor, A.J.: Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. Nano Lett. 9, 12–17 (2009)

    Article  Google Scholar 

  12. Star, A., Tu, E., Niemann, J., Gabriel, J.P., Joiner, C.S., Valcke, C.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. U.S.A. 103, 921–926 (2006)

    Article  Google Scholar 

  13. Jeng, E.S., Moll, A.E., Roy, A.C., Gastala, J.B., Strano, M.S.: Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett. 6, 371–375 (2006)

    Article  Google Scholar 

  14. Hazani, M., Hennrich, F., Kappes, M., Naaman, R., Peled, D., Sidorov, V., Shvarts, D.: DNA-mediated self-assembly of carbon nanotube-based electronic devices. Chem. Phys. Lett. 391, 389–392 (2004)

    Article  Google Scholar 

  15. Li, S., He, P., Dong, J., Guo, Z., Dai, L.: DNA-directed self-assembling of carbon nanotubes. J. Am. Chem. Soc. 127, 14–15 (2005)

    Article  Google Scholar 

  16. Liu, H., He, J., Tang, J., Liu, H., Pang, P., Cao, D., Krstic, P., Joseph, S., Lindsay, S., Nuckolls, C.: Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010)

    Article  Google Scholar 

  17. Lulevich, V., Kim, S., Grigoropoulos, C.P., Noy, A.: Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy. Nano Lett. 11, 1171–1176 (2011)

    Article  Google Scholar 

  18. Gao, H., Kong, Y., Cui, D.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471–473 (2003)

    Article  Google Scholar 

  19. Okada, T., Kaneko, T., Hatakeyama, R., Tohji, K.: Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes. Chem. Phys. Lett. 417, 288–292 (2006)

    Article  Google Scholar 

  20. Yeh, I.C., Hummer, G.: Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 101, 12177–12182 (2004)

    Article  Google Scholar 

  21. Xie, Y., Kong, Y., Soh, A.K., Gao, H.: Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane. J. Chem. Phys. 127, 225101–225108 (2007)

    Article  Google Scholar 

  22. O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kitrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002)

    Article  Google Scholar 

  23. Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007)

    Article  Google Scholar 

  24. Carlson, L.J., Krauss, T.D.: Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008)

    Article  Google Scholar 

  25. Ma, Y.-Z., Hertel, T., Vardeny, Z.V., Fleming, G.R., Valkunas, L.: Ultrafast spectroscopy of carbon nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 321–352. Springer, Heidelberg (2008)

    Google Scholar 

  26. Lefebvre, J., Maruyama, S., Finnie, P.: Photoluminescence: science and applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 287–319. Springer, Heidelberg (2008)

    Google Scholar 

  27. Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 195–227. Springer, Heidelberg (2008)

    Google Scholar 

  28. Hertel, T.: Photophysics in carbon nanotubes and related structures. In: Guldi, D., Martin, N. (eds.) Carbon Nanotubes and Related Structures, pp. 77–102. Wiley-VCH Verlag GmbH, Weinheim (2010)

    Chapter  Google Scholar 

  29. Avouris, P., Freitag, M., Perebeinos, V.: Carbon-nanotube optoelectronics. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 423–454. Springer, Heidelberg (2008)

    Google Scholar 

  30. Matsuda, K.: Exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy. In: Marulanda, J.M. (ed.) Carbon Nanotubes Electronic Properties of Carbon Nanotubes, pp. 353–368. InTech, Vukovar (2011)

    Google Scholar 

  31. Ohno, Y., Maruyama, S., Mizutani, T.: Environmental effects on photoluminescence of single-walled carbon nanotubes. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 109–121. InTech, Vukovar (2010)

    Google Scholar 

  32. Bergin, S.D., Sun, Z., Streich, P., Hamilton, J., Coleman, J.N.: New solvents for nanotubes: approaching the dispersibility of surfactants. J. Phys. Chem. C 114, 231–237 (2010)

    Article  Google Scholar 

  33. Cheng, Q., Debnath, S., O’Neill, L., Hedderman, T.G., Gregan, E., Byrne, H.J.: Systematic study of the dispersion of SWNTs in organic solvents. J. Phys. Chem. C 114, 4857–4863 (2010)

    Article  Google Scholar 

  34. Forney, M.W., Poler, J.C.: Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems. J. Phys. Chem. C 115, 10531–10536 (2011)

    Article  Google Scholar 

  35. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003)

    Article  Google Scholar 

  36. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)

    Article  Google Scholar 

  37. Nish, A., Nicholas, R.J.: Temperature induced restoration of fluorescence from oxidised single walled carbon nanotubes in aqueous sodium dodecylsulfate solution. Phys. Chem. Chem. Phys. 8, 3547–3551 (2006)

    Article  Google Scholar 

  38. Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114, 9805–9811 (2010)

    Article  Google Scholar 

  39. Nair, N., Kim, W.-J., Braatz, R.D., Strano, M.S.: Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 24, 1790–1795 (2008)

    Article  Google Scholar 

  40. Nish, A., Hwang, J.-Y., Doig, J., Nicholas, R.J.: Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2, 640–646 (2007)

    Article  Google Scholar 

  41. Sánchez-Pomales, G., Pagán-Miranda, C., Santiago-Rodríguez, L., Cabrera, C.R.: DNA-wrapped carbon nanotubes: from synthesis to applications. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 721–748. InTeh, Vukovar (2010)

    Google Scholar 

  42. Koh, B., Park, J.B., Hou, X., Cheng, W.: Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 115, 2627–2633 (2011)

    Article  Google Scholar 

  43. Kam, N.W.S., Liu, Z., Dai, H.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45, 577–581 (2006)

    Article  Google Scholar 

  44. Singh, R., Pantarotto, D., McCarthy, D.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005)

    Article  Google Scholar 

  45. Taghdisi, S.M., Lavaee, P., Ramezani, M., Abnous, K.: Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur. J. Pharm. Biopharm. 77, 200–206 (2011)

    Article  Google Scholar 

  46. Heller, D.A., Jin, H., Martinez, B.M., Patel, D., Miller, B.M., Yeung, T.-K., Jena, P.V., Hobartner, C., Ha, T., Silverman, S.K., Strano, M.S.: Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009)

    Article  Google Scholar 

  47. Tu, X., Zheng, M.: DNA-based approach to the carbon nanotube sorting problem. Nano Res. 1, 185–194 (2008)

    Article  Google Scholar 

  48. Strano, M.S., Zheng, M., Jagota, A., Onoa, G.B., Heller, D.A., Barone, P.W., Usrey, M.L.: Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 4, 543–550 (2004)

    Article  Google Scholar 

  49. Arnold, M.S., Stupp, S.I., Hersam, M.C.: Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005)

    Article  Google Scholar 

  50. Zhang, L., Zaric, S., Tu, X., Wang, X., Zhao, W., Dai, H.: Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 130, 2686–2691 (2008)

    Article  Google Scholar 

  51. Lustig, S.R., Jagota, A., Khripin, C., Zheng, M.: Structure-based carbon nanotube separations by ion-surface interactions. Mater. Res. Symp. Proc. 923, 1–6 (2006)

    Article  Google Scholar 

  52. Huang, X., McLean, R.S., Zheng, M.: Huang high-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77, 6225–6228 (2005)

    Article  Google Scholar 

  53. Bauer, B.J., Becker, M.L., Bajpai, V., Fagan, J.A., Hobbie, E.K., Migler, K., Guttman, C.M., Blair, W.R.: Measurements of single-wall nanotube dispersion by size exclusion chromatography. J. Phys. Chem. C 111, 17914–17918 (2007)

    Article  Google Scholar 

  54. Asada, Y., Sugai, T., Kitaura, R., Shinohara, H.: Chromatographic length separation and photoluminescence study on DNA-wrapped single-wall and double-wall carbon nanotubes. J. Nanomaterials 2009, 1–9 (2009)

    Article  Google Scholar 

  55. Chun, J., Fagan, J.A., Hobbie, E.K., Bauer, B.J.: Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80, 2514–2523 (2008)

    Article  Google Scholar 

  56. Sickert, D., Taeger, S., Neumann, A., Jost, O., Eckstein, G., Mertig, M., Pompe, W.: Separation and assembly of DNA-dispersed carbon nanotubes by dielectrophoresis. AIP Conf. Proc. 786, 271–274 (2005)

    Article  Google Scholar 

  57. Vetcher, A.A., Srinivasan, S., Vetcher, I.A., Abramov, S.M., Kozlov, M., Baughman, R.H., Levene, S.D.: Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis. Nanotechnology 17, 4263–4269 (2006)

    Article  Google Scholar 

  58. Müller, K., Richert, C.: The unlikely surfactant: DNA as a ligand for single-walled carbon nanotubes. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 749–766. InTeh, Vukovar (2010)

    Google Scholar 

  59. Haggenmueller, R., Rahatekar, S.S., Fagan, J.A., Chun, J.H., Becker, M.L., Naik, R.R., Krauss, T., Carlson, L., Kadla, J.F., Trulove, P.C., Fox, D.F., DeLong, H.C., Fang, Z.C., Kelley, S.O., Gilman, J.W.: Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and Biomolecules. Langmuir 24, 507050–507078 (2008)

    Article  Google Scholar 

  60. Simpson, J.R., Fagan, J.A., Becker, M.L., Hobbie, E.K., Hight Walker, A.R.: The effect of dispersant on defects in length-separated single-wall carbon nanotubes measured by Raman spectroscopy. Carbon 47, 3238–3241 (2009)

    Article  Google Scholar 

  61. Campbell, J.F., Tessmer, I., Thorp, H.H., Erie, D.A.: Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J. Am. Chem. Soc. 130, 10648–10655 (2008)

    Article  Google Scholar 

  62. Karachevtsev, M.V., Lytvyn, O.S., Stepanian, S.G., Leontiev, V.S., Adamowicz, L., Karachevtsev, V.A.: SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling. J. Nanosci. Nanotechnol. 8, 1473–1480 (2008)

    Google Scholar 

  63. Toita, S., Kang, D., Kobayashi, K., Kawamoto, H., Kojima, K., Tachibana, M.: Atomic force microscopic study on DNA-wrapping for different diameter single-wall carbon nanotubes. Diam. Relat. Mat. 17, 1389–1393 (2008)

    Article  Google Scholar 

  64. Cathcart, H., Nicolosi, V., Hughes, J.M., Blau, W.J., Kelly, J.M., Quinn, S.J., Coleman, J.N.: Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. J. Am. Chem. Soc. 130, 12734–12744 (2008)

    Article  Google Scholar 

  65. Malik, S., Vogel, S., Rosner, H., Arnold, K., Hennrich, F., Kohler, A.-K., Richert, C., Kappes, M.M.: Physical chemical characterization of DNA–SWNT suspensions and associated composites. Compos. Sci. Technol. 67, 916–921 (2007)

    Article  Google Scholar 

  66. Karachevtsev, V.A., Glamazda, A. Yu., Leontiev, V.S., Mateichenko, P.V., Dettlaff-Weglikowska, U.: SWNTs with DNA in aqueous solution and films. AIP Conf. Proceed. 786, 257–262 (2005)

    Article  Google Scholar 

  67. Heller, D.A., Jeng, E.S., Yeung, T.-K., Martinez, B.M., Moll, A.E., Gastala, J.B., Strano, M.S.: Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006)

    Article  Google Scholar 

  68. Cha, M., Jung, S., Cha, M.-H., Kim, G., Ihm, J., Lee, J.: Reversible metal-semiconductor transition of ssDNA-decorated single-walled carbon nanotubes. Nano Lett. 9, 1345–1349 (2009)

    Article  Google Scholar 

  69. Bobadilla, A.D., Seminario, J.M.: DNA-CNT Interactions and Gating Mechanism Using MD and DFT. J. Phys. Chem. C 115, 3466–3474 (2011)

    Article  Google Scholar 

  70. Gao, H., Kong, Y.: Simulation of DNA-nanotube interactions. Annu. Rev. Mater. Res. 34, 123–150 (2004)

    Article  Google Scholar 

  71. Lu, G.P., Maragakis, P., Kaxiras, E.: Carbon nanotube interaction with DNA. Nano Lett. 5, 897–900 (2005)

    Article  Google Scholar 

  72. Gladchenko, G.O., Karachevtsev, M.V., Leontiev, V.S., Valeev, V.A., Glamazda, A. Yu., Plokhotnichenko, A.M., Stepanian, S.G.: Hybrids of fragmented double-stranded DNA and carbon nanotubes in aqueous solution. Mol. Phys. 104, 3193–3201 (2006)

    Article  Google Scholar 

  73. Manohar, S., Tang, T., Jagota, A.: Structure of homopolymer DNA-CNT hybrids. J. Phys. Chem. C 111, 17835–17845 (2007)

    Article  Google Scholar 

  74. Zhao, X., Johnson, J.K.: Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129, 10438–10445 (2007)

    Article  Google Scholar 

  75. Frischknecht, A.L., Martin, M.G.: Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J. Phys. Chem. C 112, 6271–6278 (2008)

    Article  Google Scholar 

  76. Karachevtsev, V.A., Gladchenko, G.O., Karachevtsev, M.V., Valeev, V.A., Leontiev, V.S., Lytvyn, O.S.: Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). Chem. Phys. Phys. Chem. 9, 2872–2881 (2008)

    Google Scholar 

  77. Martin, W., Zhu, W., Krilov, G.: Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. J. Phys. Chem. B 112, 16076–16089 (2008)

    Article  Google Scholar 

  78. Johnson, R.R., Johnson, A.T.C., Klein, M.L.: Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 8, 69–75 (2008)

    Article  Google Scholar 

  79. Johnson, R.R., Kohlmeyer, A., Johnson, A.T.C., Klein, M.L.: Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett. 9, 537–541 (2009)

    Article  Google Scholar 

  80. Johnson, R.R., Johnson, A.T.C., Klein, M.L.: The nature of DNA-base–carbon-nanotube interactions. Small 6, 31–34 (2010)

    Article  Google Scholar 

  81. Roxbury, D., Manohar, S., Jagota, A.: Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J. Phys. Chem. C 114, 13267–13276 (2010)

    Article  Google Scholar 

  82. Karachevtsev, M.V., Karachevtsev, V.A.: Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling. J. Phys. Chem. B 115, 9271–9279 (2011)

    Article  Google Scholar 

  83. Roxbury, D., Jagota, A., Mittal, J.: Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J. Am. Chem. Soc. 133, 13545–13550 (2011)

    Article  Google Scholar 

  84. Das, A., Sood, A.K., Maiti, P.K., Das, M., Varadarajan, R., Rao, C.N.R.: Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem. Phys. Lett. 453, 266–273 (2008)

    Article  Google Scholar 

  85. Gowtham, S., Scheicher, R.H., Pandey, R., Karna, S.P., Ahuja, R.: First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 19, 125701–125718 (2008)

    Article  Google Scholar 

  86. Shtogun, Y.V., Woods, L.M., Dovbeshko, G.I.: Adsorption of adenine and thymine and their radicals on single-wall carbon nanotubes. J. Phys. Chem. C 111, 18174–18181 (2007)

    Article  Google Scholar 

  87. Wang, Y., Bu, Y.: Noncovalent Interactions between cytosine and SWNT: curvature dependence of complexes via.ππ. Stacking and cooperative CH…. π/NH… π. J. Phys. Chem. B 111, 6520–6526 (2007)

    Article  Google Scholar 

  88. Wang, Y.: Theoretical evidence for the stronger ability of thymine to disperse SWNT than cytosine and adenine: self-stacking of DNA bases vs their cross-stacking with SWNT. J. Phys. Chem. C 112, 14297–14303 (2008)

    Article  Google Scholar 

  89. Stepanian, S.G., Karachevtsev, M.V., Glamazda, A. Yu., Karachevtsev, V.A., Adamowicz, L.: Stacking interaction of cytosine with carbon nanotubes: MP2, DFT and Raman spectroscopy study. Chem. Phys. Lett. 459, 153–158 (2008)

    Article  Google Scholar 

  90. Stepanian, S.G., Karachevtsev, M.V., Glamazda, A. Yu., Karachevtsev, V.A., Adamowicz, L.: Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. J. Phys. Chem. A 113, 3621–3629 (2009)

    Article  Google Scholar 

  91. Shukla, M.K., Dubey, M., Zakar, E., Namburu, R., Czyznikowska, Z., Leszczynski, J.: Interaction of nucleic acid bases with single-walled carbon nanotube. Chem. Phys. Lett. 480, 269–272 (2009)

    Article  Google Scholar 

  92. Umadevi, D., Sastry, G.N.: Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J. Phys. Chem. Lett. 2, 1572–1576 (2011)

    Article  Google Scholar 

  93. Meng, S., Maragakis, P., Papaloukas, C., Kaxiras, E.: DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 7, 45–50 (2007)

    Article  Google Scholar 

  94. Wang, H., Ceulemans, A.: Physisorption of adenine DNA nucleosides on zigzag and armchair single-walled carbon nanotubes: a first-principles study. Phys. Rev. B 79, 195419–195426 (2009)

    Article  Google Scholar 

  95. Xiao, Z., Wang, X., Xu, X., Zhang, H., Li, Y., Wang, Y.: Base- and structure-dependent DNA dinucleotide–carbon nanotube interactions: molecular dynamics simulations and thermodynamic analysis. J. Phys. Chem. C 115, 21546–21558 (2011)

    Article  Google Scholar 

  96. Sponer, J., Rileya, K.E., Hobza, P.: Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 10, 2595–2610 (2008)

    Article  Google Scholar 

  97. Hughes, J.M., Cathcart, H., Coleman, J.N.: From dispersion and exfoliation of nanotubes with synthetic oligonucleotides: variation of dispersion efficiency and oligo-nanotube interaction with base type. J. Phys. Chem. C 114, 11741–11747 (2010)

    Article  Google Scholar 

  98. Enyashin, A.N., Gemming, S., Seifert, G.: DNA-wrapped carbon nanotubes. Nanotechnology 18, 245702-1-10 (2007)

    Google Scholar 

  99. Gladchenko, G.O., Lytvyn, O.S., Karachevtsev, M.V., Valeev, V.A., Leontiev, V.S., Karachevtsev, V.A.: Binding of polynucleotides with single-walled carbon nanotubes: effect of temperature. Materialwissenschaft und Werkstofftechnik 42, 92–97 (2011)

    Article  Google Scholar 

  100. Roxbury, D., Tu, X., Zheng, M., Jagota, A.: Recognition Ability of DNA for carbon nanotubes correlates with their binding affinity. Langmuir 27, 8282–8293 (2011)

    Article  Google Scholar 

  101. Kim, S.N., Kuang, Z., Grote, J.G., Farmer, B.L., Naik, R.R.: Enrichment of (6,5) single wall carbon nanotubes using genomic DNA. Nano Lett. 8, 4415–4420 (2008)

    Article  Google Scholar 

  102. Karachevtsev, V.A., Glamazda, A. Yu., Dettlaff-Weglikowska, U., Leontiev, V.S., Mateichenko, P.V., Roth, S., Rao, A.M.: Spectroscopic and SEM studies of SWNTs: polymer solutions and films. Carbon 44, 1292–1297 (2006)

    Article  Google Scholar 

  103. Gigliotti, B., Sakizzie, B., Bethune, D.S., Shelby, R.M., Cha, J.N.: Sequence- independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett. 6, 159–164 (2006)

    Article  Google Scholar 

  104. Zhao, W., Gao, Y., Brook, M.A., Li, Y.: Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification. Chem. Commun. 1, 3582–3584 (2006)

    Article  Google Scholar 

  105. Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)

    Article  Google Scholar 

  106. Fu, D., Okimoto, H., Lee, C.W., Takenobu, T., Iwasa, Y., Kataura, H., Li, L.-J.: Ultrasensitive detection of DNA molecules with high on/off single-walled carbon nanotube network. Adv. Mater. 22, 4867–4871 (2010)

    Article  Google Scholar 

  107. Liang, Z., Lao, R., Wang, J., Liu, Y., Wang, L., Huang, Q., Song, S., Li, G., Fan, C.: Solubilization of single-walled carbon nanotubes with single-stranded DNA generated from asymmetric PCR. Int. J. Mol. Sci. 8, 705–713 (2007)

    Article  Google Scholar 

  108. Jeng, E.S., Barone, P.W., Nelson, J.D., Strano, M.S.: Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. Small 3, 1602–1609 (2007)

    Article  Google Scholar 

  109. Cathcart, H., Quinn, S., Nicolosi, V., Kelly, J.M., Blau, W.J., Coleman, J.N.: Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J. Phys. Chem. C 111, 66–74 (2007)

    Article  Google Scholar 

  110. Vogel, S.R., Kappes, M.M., Hennrich, F., Richert, C.: An unexpected new optimum in the structure space of DNA solubilizing single-walled Carbon nanotubes. Chem. Eur. J. 13, 1815–1820 (2007)

    Article  Google Scholar 

  111. Noguchi, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Regulation of the near-IR spectral properties of individually dissolved single-walled carbon nanotubes in aqueous solutions of dsDNA. Chem. Eur. J. 14, 5966–5973 (2008)

    Article  Google Scholar 

  112. Noguchi, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chem. Phys. Lett. 455, 249–251 (2008)

    Article  Google Scholar 

  113. Yamamoto, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. Nanoscale 2, 1767–1772 (2010)

    Article  Google Scholar 

  114. Elsner, H.I., Lindblad, E.B.: Ultrasonic degradation of DNA. J. Mol. Cell. Biol. 8, 697–701 (1989)

    Google Scholar 

  115. Mann, T.L., Krull, U.J.: The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosens. Bioelectron. 20, 945–955 (2004)

    Article  Google Scholar 

  116. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part II. W.H. Freeman & Company, San Francisco (1980)

    Google Scholar 

  117. Tinoco, I.: Hypochromism in polynucleotides. J. Am. Chem. Soc. 82, 4785–4790 (1960)

    Article  Google Scholar 

  118. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)

    Google Scholar 

  119. Hamon, M.A., Itkis, M.E., Niyogi, S., Alvaraes, T., Kuper, C., Menon, M., Haddon, R.C.: Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 11292–11293 (2001)

    Article  Google Scholar 

  120. Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1239 (2003)

    Article  Google Scholar 

  121. Tu, X., Walker, A.R.H., Khripin, C.Y., Zheng, M.: Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133, 12998–13001 (2011)

    Article  Google Scholar 

  122. Ajiki, H., Ando, T.: Ahronov-Bohm effect in carbon nanotubes. Phys. B 201, 349–352 (1994)

    Article  Google Scholar 

  123. Bozovic, I., Bozovic, N., Damnjanovic, M.: Optical dichroism in nanotubes. Phys. Rev. B 62, 6971–6974 (2000)

    Article  Google Scholar 

  124. Lefebvre, J., Fraser, J.M., Finnie, P., Homma, Y.: Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 69, 075403-1-075403-5 (2004)

    Google Scholar 

  125. Miyauchi, Y., Oba, M., Maruyama, S.: Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440-1-205440-6 (2006)

    Google Scholar 

  126. Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)

    Article  Google Scholar 

  127. Alvarez, W.E., Pompeo, F., Herrera, J.E., Balzano, L., Resasco, D.E.: Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co–Mo catalysts. Chem. Mater. 14, 1853–1858 (2002)

    Article  Google Scholar 

  128. Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002)

    Article  Google Scholar 

  129. Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B.: Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003)

    Article  Google Scholar 

  130. Fantini, C., Jorio, A., Santos, A.P., Peressinotto, V.S.T., Pimenta, M.A.: Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 439, 138–142 (2007)

    Article  Google Scholar 

  131. Hagen, A., Hertel, T.: Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett. 3, 383–388 (2003)

    Article  Google Scholar 

  132. Hartschuh, A., Pedrosa, H.N., Peterson, J., Huang, L., Anger, P., Qian, H., Meixner, A.J., Steiner, M., Novotny, L., Krauss, T.D.: Single carbon nanotube optical spectroscopy. Chem. Phys. Chem. 6, 577–582 (2005)

    Article  Google Scholar 

  133. Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Rinzler, A., Smalley, R.E.: Localized and delocalized electronic states in single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4729–4732 (1998)

    Article  Google Scholar 

  134. Reed, B.W., Sarikaya, M.: Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Phys. Rev. B 64, 195404–1–195404–13 (2001)

    Google Scholar 

  135. Murakami, Y., Einarsson, E., Edamura, T., Maruyama, S.: Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys. Rev. Lett. 94, 087402–1–087402–4 (2005)

    Google Scholar 

  136. Murakami, Y., Maruyama, S.: Coupling between localized resonance and excitation of surface waves in metal hole arrays. Phys. Rev. B 79, 155445–1–155445–4 (2009)

    Google Scholar 

  137. Rance, G.A., Marsh, D.H., Nicholas, R.J., Khlobystov, A.N.: UV–vis absorption spectroscopy of carbon nanotubes: relationship between the p-electron plasmon and nanotube diameter. Chem. Phys. Lett. 493, 19–23 (2010)

    Article  Google Scholar 

  138. Reich, S., Thomsen, C., Ordejon, P.: Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 65, 155411–1–155411–11 (2002)

    Google Scholar 

  139. Karachevtsev, V.A., Glamazda, A. Yu., Dettlaff-Weglikowska, U., Leontiev, V.S., Plokhotnichenko, A.M., Roth, S.: Spectroscopy study of SWNT in aqueous solution with different surfactants. AIP Conf. Proc. 685, 202–207 (2003)

    Article  Google Scholar 

  140. Doorn, S.K.: Raman studies of new carbon nanotube sample types. J. Nanosci. Nanotechnol. 5, 1023–1034 (2005)

    Article  Google Scholar 

  141. Park, J.S., Oyama, Y., Saito, R., Izumida, W., Jiang, J., Sato, K., Fantini, C., Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Raman resonance window of single-wall carbon nanotubes. Phys. Rev. B 74, 165414–1–165414–6 (2006)

    Google Scholar 

  142. Itkis, M.E., Perea, D.E., Niyogi, S., Rickard, S.M., Hamon, M.A., Hu, H., Zhao, B., Haddon, R.C.: Purity evaluation of As-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 3, 309–314 (2003)

    Article  Google Scholar 

  143. Nepal, D., Kim, D.S., Geckeler, K.E.: A facile and rapid purification method for single-walled carbon nanotubes. Carbon 43, 660–662 (2005)

    Article  Google Scholar 

  144. Naumov, A.V., Ghosh, S., Tsyboulski, D.A., Bachilo, S.M., Weisman, R.B.: Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5, 1639–1648 (2011)

    Article  Google Scholar 

  145. Ryabenko, A.G., Dorofeeva, T.V., Zvereva, G.I.: UV–VIS–NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy. Carbon 42, 1523–1535 (2004)

    Article  Google Scholar 

  146. Nair, N., Usrey, M.L., Kim, W.J., Braatz, R.D., Strano, M.S.: Estimation of the (n, m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra. Anal. Chem. 78, 7689–7696 (2006)

    Article  Google Scholar 

  147. Dyke, C.A., Tour, J.M.: Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 3, 1215–1218 (2003)

    Article  Google Scholar 

  148. Ando, T.: Role of the Aharonov–Bohm phase in the optical properties of carbon nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 229–250. Springer, Heidelberg (2008)

    Google Scholar 

  149. Naumov, A.V., Kuznetsov, O.A., Harutyunyan, A.R., Green, A.A., Hersam, M.C., Resasco, D.E., Nikolaev, P.N., Weisman, R.B.: Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett. 9, 3203–3208 (2009)

    Article  Google Scholar 

  150. Strano, M.S., Doorn, S.K., Haroz, E.H., Kittrell, C., Hauge, R.H., Smalley, R.E.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3, 1091–1096 (2003)

    Article  Google Scholar 

  151. Hartschuh, A., Pedrosa, H.N., Novotny, L., Krauss, T.D.: Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003)

    Article  Google Scholar 

  152. Luo, Z., Pfefferle, L.D., Haller, G.L., Papadimitrakopoulos, F.: (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J. Am. Chem. Soc. 128, 15511–15516 (2006)

    Article  Google Scholar 

  153. Topinka, M.A., Rowell, M.W., Goldhaber-Gordon, D., McGehee, M.D., Hecht, D.S., Gruner, G.: Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett. 9, 1866–1871 (2009)

    Article  Google Scholar 

  154. Asada, Y., Miyata, Y., Shiozawa, K., Ohno, Y., Kitaura, R., Mizutani, T., Shinohara, H.: Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115, 270–273 (2011)

    Article  Google Scholar 

  155. Yao, Z., Kane, C.L., Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)

    Article  Google Scholar 

  156. Wang, R., Sun, J., Gao, L., Zhang, J.: Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. J. Mater. Chem. 20, 6903–6909 (2010)

    Article  Google Scholar 

  157. Miyata, Y., Yanagi, K., Maniwa, Y., Kataura, H.: Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J. Phys. Chem. C 112, 13187–13191 (2008)

    Article  Google Scholar 

  158. Attal, S., Thiruvengadathan, R., Regev, O.: Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV–visible absorption spectroscopy. Anal. Chem. 78, 8098–8104 (2006)

    Article  Google Scholar 

  159. Jeong, S.H., Kim, K.K., Jeong, S.J., An, K.H., Lee, S.H., Lee, Y.H.: Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synth. Met. 157, 570–574 (2007)

    Article  Google Scholar 

  160. Huang, L., Zhang, H., Wu, B., Liu, Y., Wei, D., Chen, J., Xue, Y., Yu, G., Kajiura, H., Li, Y.: A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization. J. Phys. Chem. C 114, 12095–12098 (2010)

    Article  Google Scholar 

  161. Jacobsen, N.S., Pantano, P.: Determining the percentages of semi-conducting and metallic single-walled carbon nanotubes in bulk soot. Carbon 49, 1998–2006 (2011)

    Article  Google Scholar 

  162. Tan, Y., Resasco, D.E.: Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 109, 14454–14460 (2005)

    Article  Google Scholar 

  163. Berciaud, S., Cognet, L., Poulin, P., Weisman, R.B., Lounis, B.: Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett. 7, 1203–1207 (2007)

    Article  Google Scholar 

  164. Islam, M.F., Milkie, D.E., Kane, C.L., Yodh, A.G., Kikkawa, J.M.: Direct measurement of the polarized absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404-1-037404-4 (2004)

    Google Scholar 

  165. Jiang, J., Saito, R., Gruneis, A., Dresselhaus, G., Dresselhaus, M.S.: Optical absorption matrix element in single-wall carbon nanotubes. Carbon 42, 3169–3176 (2004)

    Article  Google Scholar 

  166. Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102, 11600–11605 (2005)

    Article  Google Scholar 

  167. Schoppler, F., Mann, C., Hain, T.C., Neubauer, F.M., Privitera, G., Bonaccorso, F., Chu, D.P., Ferrari, A.C., Hertel, T.: Molar extinction coefficient of single-wall carbon nanotubes. J. Phys. Chem. C 115, 14682–14686 (2011)

    Article  Google Scholar 

  168. Zhao, B., Itkis, M.E., Niyogi, S., Hu, H., Zhang, J., Haddon, R.C.: Study of the extinction coefficients of single-walled carbon nanotubes and related carbon materials. J. Phys. Chem. B 108, 8136–8141 (2004)

    Article  Google Scholar 

  169. Landi, B.J., Ruf, H.J., Evans, C.M., Cress, C.D., Raffaelle, R.P.: Thermal oxidation profiling of single-walled carbon nanotubes. J. Phys. Chem. B 109, 9952–9965 (2005)

    Article  Google Scholar 

  170. Kim, W.-J., Lee, C.Y., O’brien, K.P., Plombon, J.J., Blackwell, J.M., Strano, M.S.: Connecting single molecule electrical measurements to ensemble spectroscopic properties for quantification of single-walled carbon nanotube separation. J. Am. Chem. Soc. 131, 3128–3129 (2009)

    Article  Google Scholar 

  171. Fantini, C., Cassimiro, J., Peressinotto, V.S.T., Plentz, F., Souza Filho, A.G., Furtado, C.A., Santos, A.P.: Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chem. Phys. Lett. 473, 96–101 (2009)

    Article  Google Scholar 

  172. Miyauchi, Y., Saito, R., Sato, K., Ohno, Y., Iwasaki, S., Mizutani, T., Jiang, J., Maruyama, S.: Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chem. Phys. Lett. 442, 394–399 (2007)

    Article  Google Scholar 

  173. Hughes, M.E., Brandin, E., Golovchenko, J.A.: Optical absorption of DNA–carbon nanotube structures. Nano Lett. 7, 1191–1194 (2007)

    Article  Google Scholar 

  174. Karachevtsev, V.A., Plokhotnichenko, A.M., Karachevtsev, M.V., Leontiev, V.S.: Decrease of carbon nanotube UV light absorption induced by π-stacking interaction with nucleotide bases. Carbon 48, 3682–3691 (2010)

    Article  Google Scholar 

  175. Snyder, S.E., Rotkin, S.V.: Optical identification of a DNA-wrapped carbon nanotube: signs of helically broken symmetry. Small 4, 1284–1286 (2008)

    Article  Google Scholar 

  176. Puller, V., Rotkin, S.V.: Helicity and broken symmetry of DNA-nanotube hybrids. Europhys. Lett. 77, 27006 (2007)

    Article  Google Scholar 

  177. Michalski, P.J., Mele, E.J.: Carbon nanotubes in helically modulated potentials. Phys. Rev. B 77, 085429-1-085429-11 (2008)

    Google Scholar 

  178. Rotkin, S.V.: Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids. Annu. Rev. Phys. Chem. 61, 241–261 (2010)

    Article  Google Scholar 

  179. Kasha, M.: Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Article  Google Scholar 

  180. Jones, M., Engtrakul, C., Metzger, W.K., Ellingson, R.J., Nozik, A.J., Heben, M.J., Rumbles, G.: Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 71, 115426-1-115426-9 (2005)

    Google Scholar 

  181. Rocha, J.-D.R., Bachilo, S.M., Ghosh, S., Arepalli, S., Weisman, R.B.: Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. Anal. Chem. 83, 7431–7437 (2011)

    Article  Google Scholar 

  182. Ando, T.: Excitons in carbon nanotubes. J. Phys. Soc. Jpn. 66, 1066–1073 (1997)

    Article  MathSciNet  Google Scholar 

  183. Kane, C.L., Mele, E.J.: Ratio problem in single nanotube fluorescence spectroscopy. Phys. Rev. Lett. 90, 207401-1-207401-4 (2003)

    Google Scholar 

  184. Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F.: The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005)

    Article  Google Scholar 

  185. Maultzsch, J., Pomraenke, R., Reich, S., Chang, E., Prezzi, D., Ruini, A., Molinari, E., Strano, M.S., Thomsen, C., Lienau, C.: Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402–1–241402–4 (2005)

    Google Scholar 

  186. Dukovic, G., Wang, F., Song, D., Sfeir, M.Y., Heinz, T.F., Brus, L.E.: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005)

    Article  Google Scholar 

  187. Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 93, 077402-1- 077402-4 (2004)

    Google Scholar 

  188. Perebeinos, V., Tersoff, J., Avouris, P.: Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402–1–257402–4 (2004)

    Google Scholar 

  189. Chang, E., Bussi, G., Ruini, A., Molinari, E.: Excitons in carbon nanotubes: an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401–1–196401–4 (2004)

    Google Scholar 

  190. Pedersen, T.G.: Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67, 073401–1–073401–4 (2003)

    Google Scholar 

  191. Zhao, H., Mazumdar, S.: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402–1–157402–4 (2004)

    Google Scholar 

  192. Kane, C.L., Mele, E.J.: Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402–1–197402–4 (2004)

    Google Scholar 

  193. Malic, E., Hirtschulz, M., Reich, S., Knorr, A.: Excitonic absorption spectra and ultrafast dephasing dynamics in arbitrary carbon nanotubes. Phys. Status Solidi Rapid. Res. Lett. 3, 196–198 (2009)

    Article  Google Scholar 

  194. Lüer, L., Hoseinkhani, S., Polli, D., Crochet, J., Hertel, T., Lanzani, G.: Size and mobility of excitons in (6,5) carbon nanotubes. Nat. Phys. 5, 54–58 (2009)

    Article  Google Scholar 

  195. Tretiak, S., Kilina, S., Piryatinski, A., Saxena, A., Martin, R.L., Bishop, A.R.: Excitons and peierls distortion in conjugated carbon nanotubes. Nano Lett. 7, 86–92 (2007)

    Article  Google Scholar 

  196. Perebeinos, V., Tersoff, J., Avouris, Ph: Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005)

    Article  Google Scholar 

  197. Jiang, J., Saito, R., Samsonidze, G.G., Jorio, A., Chou, S.G., Dresselhaus, G., Dresselhaus, M.S.: Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys. Rev. B 75, 035407–1–035407–13 (2007)

    Google Scholar 

  198. Kono, J., Nicholas, R.J., Roche, S.: High magnetic field phenomena. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 393–422. Springer, Heidelberg (2008)

    Google Scholar 

  199. Shaver, J., Kono, J.: Temperature-dependent magneto-photoluminescence spectroscopy of carbon nanotubes: evidence for dark excitons. Laser Photon. Rev. 1, 260–274 (2007)

    Article  Google Scholar 

  200. Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect. Phys. Rev. Lett. 101, 147404–1–147404–4 (2008)

    Google Scholar 

  201. Srivastava, A., Htoon, H., Klimov, V.I., Kono, J.: Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402–1–087402–4 (2008)

    Google Scholar 

  202. Shaver, J., Crooker, S.A., Fagan, J.A., Hobbie, E.K., Ubrig, N., Portugall, O., Perebeinos, V., Avouris, Ph., Kono, J.: Magneto-optical spectroscopy of highly aligned carbon nanotubes: identifying the role of threading magnetic flux. Phys. Rev. B 78, 081402(R) (2008)

    Google Scholar 

  203. Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Direct observation of dark exciton states in single carbon nanotubes. J. Lumin. 129, 1702–1705 (2009)

    Article  Google Scholar 

  204. Mortimer, I.B., Nicholas, R.J.: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98, 027404–1–027404–4 (2007)

    Google Scholar 

  205. Berger, S., Voisin, C., Cassabois, G., Delalande, C., Roussignol, P.: Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007)

    Article  Google Scholar 

  206. Scholes, G.D., Tretiak, S., McDonald, T.J., Metzger, W.K., Engtrakul, C., Rumbles, G., Heben, M.J.: Low-lying exciton states determine the photophysics of semiconducting single wall carbon nanotubes. J. Phys. Chem. C 111, 11139–11149 (2007)

    Article  Google Scholar 

  207. Metzger, W.K., McDonald, T.J., Engtrakul, C., Blackburn, J.L., Scholes, G.D., Rumbles, G., Heben, M.J.: Temperature-dependent excitonic decay and multiple states in single-wall carbon nanotubes. J. Phys. Chem. C 111, 3601–3606 (2007)

    Article  Google Scholar 

  208. Ma, Y.Z., Valkunas, L., Bachilo, S.M., Fleming, G.R.: Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 8, 5689–5693 (2006)

    Article  Google Scholar 

  209. Hagen, A., Steiner, M., Raschke, M.B., Lienau, C., Hertel, T., Qian, H., Meixner, A.J., Hartschuh, A.: Exciton dynamics in individual single–walled carbon nanotubes. Phys. Rev. Lett. 95, 197401–1–197401–4 (2005)

    Google Scholar 

  210. Takeyama, S., Suzuki, H., Yokoi, H., Murakami, Y., Maruyama, Sh.: Aharonov-Bohm exciton absorption splitting in chiral specific single-walled carbon nanotubes in magnetic fields of up to 78 T. Phys. Rev. B 83, 235405–1–235405–4 (2011)

    Google Scholar 

  211. Jones, M., Metzger, W.K., McDonald, T.J., Engtrakul, C., Ellingson, R.J., Rumbles, G., Heben, M.J.: Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett. 7, 300–306 (2007)

    Article  Google Scholar 

  212. Zhu, Z., Crochet, J., Arnold, M.S., Hersam, M.C., Ulbricht, H., Resasco, D., Hertel, T.: Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007)

    Article  Google Scholar 

  213. Habenicht, B.F., Prezhdo, O.V.: Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: a time-domain ab initio study. Phys. Rev. Lett. 100, 197402–1–197402–4 (2008)

    Google Scholar 

  214. Kiowski, O., Arnold, K., Lebedkin, S., Hennrich, F., Kappes, M.M.: Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 99, 237402–1–237402–4 (2007)

    Google Scholar 

  215. Blackburn, J.L., McDonald, T.J., Metzger, W.K., Engtrakul, C., Rumbles, G., Heben, M.J.: Protonation effects on the branching ratio in photoexcited single-walled carbon nanotube dispersions. Nano Lett. 8, 1047–1054 (2008)

    Article  Google Scholar 

  216. Kishida, H., Nagasawa, Y., Imamura, S., Nakamura, A.: Direct observation of dark excitons in micelle-wrapped single-wall carbon nanotubes. Phys. Rev. Lett. 100, 097401–1–097401–4 (2008)

    Google Scholar 

  217. Harutyunyan, H., Gokus, T., Green, A.A., Hersam, M.C., Allegrini, M., Hartschuh, A.: Defect-Induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009)

    Article  Google Scholar 

  218. Perebeinos, V., Tersoff, J., Avouris, P.: Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402-1-4 (2005)

    Google Scholar 

  219. Torrens, O.N., Zheng, M., Kikkawa, J.M.: Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy. Phys. Rev. Lett. 101, 157401-1-4 (2008)

    Google Scholar 

  220. Saito, R., Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Pimenta, M.A.: Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401-1-4 (2002)

    Google Scholar 

  221. Miyauchi, Y., Maruyama, S.: Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes. Phys. Rev. B 74, 035415-1-9 (2006)

    Google Scholar 

  222. Plentz, F., Ribeiro, H.B., Jorio, A., Strano, M.S., Pimenta, M.A.: Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. Phys. Rev. Lett. 95, 247401-1-4 (2005)

    Google Scholar 

  223. Htoon, H., O’Connell, M.J., Doorn, S.K., Klimov, V.I.: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions. Phys. Rev. Lett. 94, 127403-1-4 (2005)

    Google Scholar 

  224. Vora, P.M., Tu, X., Mele, E.J., Zheng, M., Kikkawa, J.M.: Chirality dependence of the K-momentum dark excitons in carbon nanotubes. Phys. Rev. B 81, 155123-1-9 (2010)

    Google Scholar 

  225. Murakami, Y., Lu, B., Kazaoui, S., Minami, N., Okubo, T., Maruyama, S.: Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Phys. Rev. B 79, 195407-1-5 (2009)

    Google Scholar 

  226. Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Origin of low-energy photoluminescence peaks in single carbon nanotubes: K -momentum dark excitons and triplet dark excitons. Phys. Rev. B 81, 033401-1-4 (2010)

    Google Scholar 

  227. Tsyboulski, D.A., Rocha, J.-D.R., Bachilo, S.M., Cognet, L., Weisman, R.B.: Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 7, 3080–3085 (2007)

    Article  Google Scholar 

  228. Carlson, L.J., Maccagnano, S.E., Zheng, M., Silcox, J., Krauss, T.D.: Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 7, 3698–3703 (2007)

    Article  Google Scholar 

  229. Berge, J.J., Gallaway, C., Barron, A.R.: Fluorescence quenching of single-walled carbon nanotubes in SDBS surfactant suspension by metal ions: quenching efficiency as a function of metal and nanotube identity. J. Phys. Chem. C 111, 17812–17820 (2007)

    Article  Google Scholar 

  230. Dukovic, G., White, B.E., Zhou, Z., Wang, F., Jockusch, S., Steigerwald, M.L., Heinz, T.F., Friesner, R.A., Turro, N.J., Brus, L.E.: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004)

    Article  Google Scholar 

  231. Rajan, A., Strano, M.S., Heller, D.A., Hertel, T., Schulten, K.: Length-dependent optical effects in single-walled carbon nanotubes. Phys. Chem. B 112, 6211–6213 (2008)

    Article  Google Scholar 

  232. Howard, W.: Dispersing carbon nanotubes using surfactants. Curr. Opin. Colloid. 14, 364–371 (2009)

    Article  Google Scholar 

  233. Crochet, J., Clemens, M., Hertel, T.: Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007)

    Article  Google Scholar 

  234. Lefebvre, J., Austing, D.G., Bond, J., Finnie, P.: Photoluminescence imaging of suspended singlewalled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006)

    Article  Google Scholar 

  235. Strano, M.S., Huffman, C.B., Moore, V.C., O’Connell, M.J., Haroz, E.H., Hubbard, J., Miller, M., Rialon, K., Kittrell, C., Ramesh, S., Hauge, R.H., Smalley, R.E.: Reversible, band-gap selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003)

    Article  Google Scholar 

  236. Wang, F., Dukovic, G., Knoesel, E., Brus, L.E., Heinz, T.F.: Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403-1-4 (2004)

    Google Scholar 

  237. Ju, S.-Y., Kopcha, W.P., Papadimitrokopoulos, F.: Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009)

    Article  Google Scholar 

  238. Rickard, D., Giordani, S., Blau, W.J., Coleman, J.N.: Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. J. Lumin. 128, 31–40 (2007)

    Article  Google Scholar 

  239. Tsyboulski, D.A., Bakota, E.L., Witus, L.S., Rocha, J.-D.R., Hartgerink, J.D., Weisman, R.B.: Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 17134–17140 (2008)

    Article  Google Scholar 

  240. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)

    Article  Google Scholar 

  241. Matsuura, K., Saito, T., Okazaki, T., Ohshima, S., Yumura, M., Iijima, S.: Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem. Phys. Lett. 429, 497–502 (2006)

    Article  Google Scholar 

  242. Bakota, E.L., Aulisa, L., Tsyboulski, D.A., Weisman, R.B., Hartgerink, J.D.: Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules 10, 2201–2206 (2009)

    Article  Google Scholar 

  243. Duque, J.G., Cognet, L., Parra-Vasquez, A.N.G., Nicholas, N., Schmidt, H.K., Pasquali, M.: Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments. J. Am. Chem. Soc. 130, 2626–2633 (2008)

    Article  Google Scholar 

  244. Wang, R.K., Chen, W.-C., Campos, D.K., Ziegler, K.J.: Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. J. Am. Chem. Soc. 130, 16330–16337 (2008)

    Article  Google Scholar 

  245. Silvera-Batista, C.A., Weinberg, Ph, Butler, J.E., Ziegler, K.J.: Long-term improvements to photoluminescence and dispersion stability by flowing SDS-SWNT suspensions through microfluidic channels. J. Am. Chem. Soc. 131, 12721–12728 (2009)

    Article  Google Scholar 

  246. Lee, A.J., Wang, X., Carlson, L.J., Smyder, J.A., Loesch, B., Tu, X., Zheng, M., Krauss, T.D.: Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011)

    Article  Google Scholar 

  247. Fantini, C., Jorio, A., Souza, M., Strano, M.S., Dresselhaus, M.S., Pimenta, M.A.: Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406-1-4 (2004)

    Google Scholar 

  248. Okazaki, T., Saito, T., Matsuura, K., Ohshima, S., Yumura, M., Iijima, S.: Photoluminescence mapping of “as-grown” single-walled carbon nanotubes: a comparison with micelle-encapsulated nanotube solutions. Nano Lett. 5, 2618–2624 (2005)

    Article  Google Scholar 

  249. Ohno, Y., Iwasaki, S., Murakami, Y., Kishimoto, S., Maruyama, S., Mizutani, T.: Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 73, 235427-1-5 (2006)

    Google Scholar 

  250. Ohno, Y., Iwasaki, S., Murakami, Y., Kishimoto, S., Maruyama, S., Mizutani, T.: Environmental dielectric screening effect on exciton transition energies in single-walled carbon nanotubes. Phys. Status Solidi B 244, 4002–4005 (2007)

    Article  Google Scholar 

  251. Kiowski, O., Lebedkin, S., Hennrich, F., Malik, S., Rosner, H., Arnold, K., Surgers, C., Kappes, M.M.: Photoluminescence microscopy of carbon nanotubes grown by chemical vapor deposition: influence of external dielectric screening on optical transition energies. Phys. Rev. B 75, 075421-1-7 (2007)

    Google Scholar 

  252. Choi, J.H., Strano, M.S.: Solvatochromism in single-walled carbon nanotubes. Appl Phys Lett 90, 223114-1-3 (2007)

    Google Scholar 

  253. Silvera-Batista, C.A., Wang, R.K., Weinberg, P., Ziegler, K.J.: Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 12, 6990–6998 (2010)

    Article  Google Scholar 

  254. Chou, S.G., Ribeiro, H.B., Barros, E.B., Santos, A.P., Nezich, D., Samsonidze, Ge.G., Fantini, C., Pimenta, M.A., Jorio, A., Filho, F.P., Dresselhaus, M.S., Dresselhaus, G., Saito, R., Zheng, M., Onoa, G.B., Semke, E.D., Swan, A.K., Unlu, M.S., Goldberg, B.B.: Optical characterization of DNA-wrapped carbon nanotube hybrids. Chem. Phys. Lett. 397, 296–301 (2004)

    Google Scholar 

  255. Jin, H., Jeng, E.S., Heller, D.A., Jena, P.V., Kirmse, R., Langowski, J., Strano, M.S.: Divalent ion and thermally induced DNA conformational polymorphism on single-walled carbon nanotubes. Macromolecules 40, 6731–6739 (2007)

    Article  Google Scholar 

  256. Walsh, A.G., Vamivakas, A.N., Yin, Y., Cronin, S.B., Unlu, M.S., Goldberg, B.B., Swan, A.K.: Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 7, 1485–1489 (2007)

    Article  Google Scholar 

  257. Walsh, A.G., Vamivakas, A.N., Yin, Y., Cronin, S.B., Unlu, M.S., Goldberg, B.B., Swan, A.K.: Scaling of exciton binding energy with external dielectric function in carbon nanotubes. Physica E 40, 2375–2379 (2007)

    Article  Google Scholar 

  258. Smyrnov, O.A.: Excitons in single-walled carbon nanotubes: environmental effect. Ukr. J. Phys. 55, 1217–1224 (2010)

    Google Scholar 

  259. Adamyan, V.M., Smyrnov, O.A., Tishchenko, S.V.: Effects of environmental and exciton screening in single-walled carbon nanotubes. J. Phys: Conf. Ser. 129, 012012 (2008)

    Article  Google Scholar 

  260. Araujo, P.T., Jorio, A., Dresselhaus, M.S., Sato, K., Saito, R.: Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes. Phys. Rev. Lett. 103, 146802-1-3 (2009)

    Google Scholar 

  261. Nugraha, A.R.T., Saito, R., Sato, K., Araujo, P.T., Jorio, A., Dresselhaus, M.S.: Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl. Phys. Lett. 97, 091905-1-3 (2010)

    Google Scholar 

  262. Ando, T.: Environment effects on excitons in semiconducting carbon nanotubes. J. Phys. Soc. Jpn. 79, 024706-1-10 (2010)

    Google Scholar 

  263. Kiowski, O., Jester, S.-S., Lebedkin, S., Jin, Z., Li, Y., Kappes, M.M.: Photoluminescence spectral imaging of ultralong single-walled carbon nanotubes: micromanipulation-induced strain, rupture, and determination of handedness. Phys. Rev. B 80, 075426-1-7 (2009)

    Google Scholar 

  264. Steiner, M., Freitag, M., Tsang, J.C., Perebeinos, V., Bol, A.A., Failla, A.V., Avouris, Ph: How does the substrate affect the Raman and excited state spectra of a carbon nanotube? Appl. Phys. A 96, 271–282 (2009)

    Article  Google Scholar 

  265. Qian, H., Araujo, P.T., Georgi, C., Gokus, T., Hartmann, N., Green, A.A., Jorio, A., Hersam, M.C., Novotny, L., Hartschuh, A.: Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping. Nano Lett. 8, 2706–2711 (2008)

    Article  Google Scholar 

  266. Georgi, C., Green, A.A., Hersam, M.C., Hartschuh, A.: Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. ACS Nano 4, 5914–5920 (2010)

    Article  Google Scholar 

  267. Hasan, T., Scardaci, V., Tan, P.H., Bonaccorso, F., Rozhin, A.G., Sun, Z., Ferrari, A.C.: Nanotube and graphene polymer composites for photonics and optoelectronics. In: Hayden, O., Nielsch, K. (eds.) Molecular- and Nano-Tubes, pp. 279–354. Springer, New York (2011)

    Chapter  Google Scholar 

  268. Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P.H., Rozhin, A.G., Ferrari, A.C.: Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009)

    Article  Google Scholar 

  269. Tan, P.H., Rozhin, A.G., Hasan, T., Hu, P., Scardaci, V., Milne, W.I., Ferrari, A.C.: Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402-1-4 (2007)

    Google Scholar 

  270. Tan, P.H., Hasan, T., Bonaccorso, F., Scardaci, V., Rozhin, A.G., Milne, W.I., Ferrari, A.C.: Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E 40, 2352–2359 (2008)

    Article  Google Scholar 

  271. Hasan, T., Tan, P.H., Bonaccorso, F., Rozhin, A., Scardaci, V., Milne, W., Ferrari, A.C.: Polymer-assisted isolation of single wall carbon nanotubes in organic solvents for optical-quality nanotube–polymer composites. J. Phys. Chem. C 112, 20227–20232 (2008)

    Article  Google Scholar 

  272. Wang, F., Sfeir, M.Y., Huang, L., Huang, X.M.H., Wu, Y., Kim, J., Hone, J., O’Brien, S., Brus, L.E., Heinz, T.F.: Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401-1-4 (2006)

    Google Scholar 

  273. Qian, H., Georgi, C., Anderson, N., Green, A.A., Hersam, M.C., Novotny, L., Hartschuh, A.: Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008)

    Article  Google Scholar 

  274. Koyama, T., Miyata, Y., Asada, Y., Shinohara, H., Kataura, H., Nakamura, A.: Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 1, 3243–3248 (2010)

    Article  Google Scholar 

  275. Lefebvre, J., Finnie, P.: Photoluminescence and Forster resonance energy transfer in elemental bundles of single- walled carbon nanotubes. J. Phys. Chem. C 113, 7536–7540 (2009)

    Article  Google Scholar 

  276. Kim, Y., Minami, N., Kazaoui, S.: Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films. Appl. Phys. Lett. 86, 73103–73106 (2005)

    Article  Google Scholar 

  277. Hirori, H., Matsuda, K., Miyauchi, Y., Maruyama, S., Kanemitsu, Y.: Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy. Phys. Rev. Lett. 97, 257401-1-4 (2006)

    Google Scholar 

  278. Berger, S., Iglesias, F., Bonnet, P., Voisin, C., Cassabois, G., Lauret, J-S., Delalande, C., Roussignol, P.: Optical properties of carbon nanotubes in a composite material: the role of dielectric screening and thermal expansion. J. Appl. Phys. 105, 094323 (094323-5) (2009)

    Google Scholar 

  279. Cognet, L., Tsyboulski, D.A., Rocha, J.-D.R., Doyle, C.D., Tour, J.M., Weisman, R.B.: Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007)

    Article  Google Scholar 

  280. Barone, P.W., Yoon, H., Ortiz-García, R., Zhang, J., Ahn, J.-H., Kim, J.-H., Strano, M.S.: Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 3, 3869–3877 (2009)

    Article  Google Scholar 

  281. Tsyboulski, D.A., Bachilo, S.M., Weisman, R.B.: Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5, 975–979 (2005)

    Article  Google Scholar 

  282. Gaufres, E., Izard, N., Vivien, L., Kazaoui, S., Marris-Morini, D., Cassan, E.: Enhancement of semiconducting single-wall carbon nanotubes photoluminescence. Opt. Lett. 34, 3845–3847 (2009)

    Article  Google Scholar 

  283. Zamora-Ledezma, C., Anez, L., Primera, J., Silva, P., Etienne-Calas, S., Anglaret, E.: Photoluminescent single wall carbon nanotubesilica composite gels. Carbon 46, 1253–1255 (2008)

    Article  Google Scholar 

  284. Chernov, A.I., Obraztsova, E.D.: Photoluminescence of single-wall carbon nanotube films. Phys. Status Solidi B 247, 2805–2809 (2010)

    Article  Google Scholar 

  285. Levshov, D.I., Yuzyuk, YuI, Michel, T., Voisin, C., Alvarez, L., Berger, S., Roussignol, P., Sauvajol, J.-L.: Raman probing of uniaxial strain in individual single-wall carbon nanotubes in a composite material. J. Phys. Chem. C 114, 16210–16214 (2010)

    Article  Google Scholar 

  286. Stranks, S.D., Sprafke, J.K., Anderson, H.L., Nicholas, R.J.: Electronic and mechanical modification of single-walled carbon nanotubes by binding to porphyrin oligomers. ACS Nano 5, 2307–2315 (2011)

    Article  Google Scholar 

  287. Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S., Weisman, R.B.: Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer. Nano Lett. 8, 826–831 (2008)

    Article  Google Scholar 

  288. Glamazda, A. Yu., Leontiev, V.S., Linnik, A.S., Karachevtsev, V.A.: Luminescence study on hybrids of carbon nanotubes with DNA in water suspension and film at 5–290 K. Low. Temp. Phys. 34, 1313–1318 (2008)

    Article  Google Scholar 

  289. Nepal, D., Geckeler, K.E.: pH-sensitive dispersion and debundling of single- walled carbon nanotubes: lysozyme as a tool. Small 2, 406–412 (2006)

    Article  Google Scholar 

  290. Wang, D., Chen, L.: Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett. 7, 1480–1484 (2007)

    Article  Google Scholar 

  291. Ikeda, A., Totsuka, Y., Nobusawa, K., Kikuchi, J.: Reversible solubilisation and precipitation of carbon nanotubes by temperature and pH control in water. J. Mater. Chem. 19, 5785–5789 (2009)

    Article  Google Scholar 

  292. Karachevtsev, V.A., Glamazda, A.Yu., Plokhotnichenko, A.M., Leontiev, V.S., Linnik, A.S.: Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. Materialwiss. Werkst. 42, 41–46 (2011)

    Article  Google Scholar 

  293. Kelley, K., Pehrsson, P.E., Ericson, L.M., Zhao, W.: Optical pH response of DNA wrapped HiPco carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1041–1044 (2005)

    Article  Google Scholar 

  294. Xu, Y., Pehrsson, P.E., Chen, L., Zhang, R., Zhao, W.: Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 111, 8638–8643 (2007)

    Article  Google Scholar 

  295. Han, X., Li, Y., Wu, S., Deng, Z.: General strategy toward pH-controlled aggregation–dispersion of gold nanoparticles and single-walled carbon nanotubes. Small 4, 326–329 (2008)

    Article  Google Scholar 

  296. Yurekli, K., Mitchell, C.A., Krishnamoorti, R.: Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004)

    Article  Google Scholar 

  297. Fagan, J.A., Landi, B.J., Mandelbaum, I., Simpson, J.R., Bajpai, V., Bauer, B.J., Migler, K., Hight Walker, A.R., Raffaelle, R., Hobbie, E.K.: Comparative measures of single-wall carbon nanotube dispersion. J. Phys. Chem. B 110, 23801–23805 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Karachevtsev, V. (2012). Photophysical Properties of SWNT Interfaced with DNA. In: Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4826-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4826-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4825-8

  • Online ISBN: 978-1-4471-4826-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics