Skip to main content
Log in

How does the substrate affect the Raman and excited state spectra of a carbon nanotube?

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E 33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the D mode and the G mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E 33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G band and D band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E 33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Top. Appl. Phys., vol. 1114 (Springer, New York, 2008)

    Google Scholar 

  2. P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007)

    Article  ADS  Google Scholar 

  3. P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2(6), 341–350 (2008)

    Article  ADS  Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    Article  ADS  Google Scholar 

  5. C. Thomsen, S. Reich, Raman scattering in carbon nanotubes, in Light Scattering in Solids IX, ed. by M. Cardona, R. Merlin. Top. Appl. Phys., vol. 108 (Springer, Berlin, 2007), pp. 115–234

    Chapter  Google Scholar 

  6. A. Hartschuh, H.N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A.J. Meixner, M. Steiner, L. Novotny, T.D. Krauss, Single carbon nanotube optical spectroscopy. ChemPhysChem 6(4), 577–582 (2005)

    Article  Google Scholar 

  7. T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut, Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5(3), 511–514 (2005)

    Article  ADS  Google Scholar 

  8. J. Lefebvre, S. Maruyama, P. Finnie, Photoluminescence: science and applications, in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, ed. by A. Jorio, M.S. Dresselhaus, G. Dresselhaus. Top. Appl. Phys., vol. 111 (Springer, New York, 2008)

    Google Scholar 

  9. Y. Zhang, J. Zhang, H.B. Son, J. Kong, Z.F. Liu, Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 17156–17157 (2005)

    Article  Google Scholar 

  10. L. Huang, X.D. Cui, B. White, S.P. O’Brien, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition. J. Phys. Chem. B 108, 16451–16456 (2004)

    Article  Google Scholar 

  11. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)

    Article  ADS  Google Scholar 

  12. P.T. Araujo, I.O. Maciel, P.B. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77, 241403 (2008)

    Article  ADS  Google Scholar 

  13. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581), 593–596 (2002)

    Article  ADS  Google Scholar 

  14. J. Lefebvre, Y. Homma, P. Finnie, Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90(21), 217401 (2003)

    Article  ADS  Google Scholar 

  15. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, The optical resonances in carbon nanotubes arise from excitons. Science 308(5723), 838–841 (2005)

    Article  ADS  Google Scholar 

  16. V. Perebeinos, J. Tersoff, P. Avouris, Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92(25), 257402 (2004)

    Article  ADS  Google Scholar 

  17. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  18. A.G. Walsh, A.N. Vamivakas, Y. Yin, S.B. Cronin, M.S. Ünlü, B.B. Goldberg, A.K. Swan, Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 7, 1485–1488 (2007)

    Article  ADS  Google Scholar 

  19. J. Lefebvre, P. Finnie, Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98(16), 167406 (2007)

    Article  ADS  Google Scholar 

  20. I.O. Maciel, N. Anderson, M.A. Pimenta, A. Hartschuh, H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A.M. Rao, L. Novotny, A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 7(11), 878–883 (2008)

    Article  ADS  Google Scholar 

  21. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura (eds.), Excitonic Processes in Solids. Solid State Sciences, vol. 60 (Springer, Berlin, 2000)

    Google Scholar 

  22. T. Hertel, V. Perebeinos, J. Crochet, K. Arnold, M. Kappes, P. Avouris, Intersubband decay of 1-D exciton resonances in carbon nanotubes. Nano Lett. 8, 87–91 (2008)

    Article  ADS  Google Scholar 

  23. V. Perebeinos, J. Tersoff, P. Avouris, Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005)

    Article  ADS  Google Scholar 

  24. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  25. Y. Zhang, H. Son, J. Zhang, M.S. Dresselhaus, J. Kong, Z. Liu, Raman spectra variation of partially suspended individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 1983–1987 (2007)

    Article  Google Scholar 

  26. H. Son, Y. Hori, S.G. Chou, D. Nezich, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, E.B. Barros, Environment effects on the Raman spectra of individual single-wall carbon nanotubes: suspended and grown on polycrystalline silicon. Appl. Phys. Lett. 85(20), 4744–4746 (2004)

    Article  ADS  Google Scholar 

  27. A. Jorio, M.A. Pimenta, A.G. Souza Filho, G.G. Samsonidze, A.K. Swan, M.S. Unlu, B.B. Goldberg, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys. Rev. Lett. 90(10), 107403 (2003)

    Article  ADS  Google Scholar 

  28. M. Souza, A. Jorio, C. Fantini, B.R.A. Neves, M.A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V.W. Brar, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, Single- and double-resonance Raman G-band processes in carbon nanotubes. Phys. Rev. B 69(24), 241403 (2004)

    Article  ADS  Google Scholar 

  29. S.B. Cronin, Y. Yin, A. Walsh, R.B. Capaz, A. Stolyarov, P. Tangney, M.L. Cohen, S.G. Louie, A.K. Swan, M.S. Unlu, B.B. Goldberg, M. Tinkham, Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion. Phys. Rev. Lett. 96(12), 127403 (2006)

    Article  ADS  Google Scholar 

  30. M. Steiner, M. Freitag, V. Perebeinos, J.C. Tsang, J.P. Small, M. Kinoshita, D. Yuan, J. Liu, P. Avouris, Phonon populations and electrical power dissipation in carbon nanotube transistors. Nat. Nanotechnol. (2009). doi:10.1038/nnano.2009.22

    Google Scholar 

  31. Y. Zhang, L. Xie, J. Zhang, Z. Wu, Z. Liu, Temperature coefficients of Raman frequency of individual single-walled carbon nanotubes. J. Phys. Chem. C 111(38), 14031–14034 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaedon Avouris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, M., Freitag, M., Tsang, J.C. et al. How does the substrate affect the Raman and excited state spectra of a carbon nanotube?. Appl. Phys. A 96, 271–282 (2009). https://doi.org/10.1007/s00339-009-5211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5211-5

PACS

Navigation