Skip to main content

Introduction and Historical Notes

Excitotoxicity in Neurologic Diseases

  • Chapter
Excitotoxicity in Neurological Diseases

Abstract

Excitotoxicity refers to neuronal death caused by activation of excitatory amino acid receptors. Several lines of evidence have linked excitotoxic cell death to the pathogenesis of both acute and chronic neurologic diseases. The initial observation that glutamate was neurotoxic was that of Lucas and Newhouse, who found that administration of glutamate to mice resulted in retinal degeneration (Lucas and Newhouse, 1957). Subsequent studies of Olney and colleagues linked neurotoxicity to the activation of excitatory amino acid receptors, and the term “excitotoxin” was coined (Olney, 1969). Further advances were those of Rothman linking release of excitatory amino acids to anoxic cell death in hippocampal cultures (Rothman, 1984), and of Choi linking calcium influx to delayed cell death caused by excitatory amino acids (Choi, 1987). More work has linked activation of excitatory amino acid receptors to free radical generation and nitric oxide, both of which may lead to oxidative stress (Dawson et al., 1991: Lafon-Cazal et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aarts M., Liu Y., Liu L., Besshoh S., Arundine M., Gurd J.W., Wang Y.T., Salter M.W., Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 2000, 298:846–850

    Article  Google Scholar 

  • Abele A.E. and Miller R.I. Potassium channel activators abolish excitotoxicity in cultured hippocampal pyramidal neurons. Neurosci Lett 1990, 115:195–200

    Article  PubMed  CAS  Google Scholar 

  • Albin R.L. and Greenamyre J.T. Alternative excitotoxic hypotheses. Neurology 1992, 42:733–738

    Article  PubMed  CAS  Google Scholar 

  • Anegawa N.J., Lynch D.R., Verdoom T.A., et al. Transfection of N-methyl-D-aspartate receptors in a nonneuronal cell line leads to cell death. J Neurochem 1995, 64:2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton SA., Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995, 15:961–973

    Article  PubMed  CAS  Google Scholar 

  • Babbedge R. C., Bland-Ward P.A., Hart S.L., et al. Inhibition of rat cerebellar nitric oxide synthase by 7-nitro indazole and related substituted indazoles. Br J Pharmacol 1993, 110, 225–228

    Article  PubMed  CAS  Google Scholar 

  • Bartus R.T., Baker K.L., Heiser A.D., et al. Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab, 1994, 14:537–544

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992, 31:119–130

    Article  PubMed  CAS  Google Scholar 

  • Bondy S.C. and Lee D. K. Oxidative stress induced by glutamate receptor agonists. Brain Res 1993, 610:229–233

    Article  PubMed  CAS  Google Scholar 

  • Bridges R.J., Koh J.Y., Hatalski C.G., et al. Increased excitotoxic vulnerability of cortical cultures with reduced levels of glutathione. Eur J Pharmacol 1991, 192:199–200

    Article  PubMed  CAS  Google Scholar 

  • Caner H., Collins J. L. Harris S.M., et al. Attenuation of AMPA-induced neurotoxicity by a calpain inhibitor. Brain Res 1993, 607:354–356.

    Article  PubMed  CAS  Google Scholar 

  • Chan P.H., Chu L., Chen S.F., et al. Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc superoxide dismutase. Stroke 1990, 21:III80

    PubMed  CAS  Google Scholar 

  • Choi D.W. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987, 7: 369–379

    PubMed  CAS  Google Scholar 

  • Chow H.S., Lynch I. J.J., Rose K. et al Trolox attenuates cortical neuronal injury induced by iron, ultraviolet light, glucose deprivation or AMPA. Brain Res 1994, 639: 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Dawson V.L., Dawson T.M., Bartley D.A. et al. Mechanisms of nitric oxide mediated neurotoxicity in primary brain cultures. J Neurosci 1993, 13:2651–2661

    PubMed  CAS  Google Scholar 

  • Dawson V.L.. Dawson T.M., London E.D. et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991, 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  • Dugan L. L., Sensi S.L. Canzoniero L. M.T. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 1995, 15:6377–6388

    PubMed  CAS  Google Scholar 

  • Dykens J.A. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 1994, 63:584–591

    Article  PubMed  CAS  Google Scholar 

  • Dykens J.A., Stern A., Trenkner E. Mechanisms of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 1987, 49:1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Eimerl S. and Schramm M. The quantity of calcium that appears to induce neuronal death. J Neurochem., 1994, 62:1223–1226

    Article  PubMed  CAS  Google Scholar 

  • Favit A., Nicoletti F., Scapagnini U. et al. Ubiquinone protects cultured neurons agonist spontaneous and excitotoxin-induced degeneration. J Cereb Blood Flow Metab 1992, 12:638–645

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A., and Schousboe A. Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 1991, 56:1075–1078.

    Article  PubMed  CAS  Google Scholar 

  • Hartley D.M., Kurth M.C., Bjerkness L., et al. Glutamate receptor-induced Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 1993, 13: 1993–2000.

    PubMed  CAS  Google Scholar 

  • Heyes M.P., Swartz K.J., Markey S.P., et al. Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s Disease. Neurosci Lett 1991, 122:265–269

    Article  PubMed  CAS  Google Scholar 

  • Hong S-C, Goto Y, Lanzino G., et al., Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 1994, 25, 663–669

    Article  PubMed  CAS  Google Scholar 

  • Huang Z., Huang P.L., Panahian N., et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994, 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M., Pietri S., Culcasi M., et al. NMDA-dependent superoxide production and neurotoxicity. Nature 1993, 364:535–537

    Article  PubMed  CAS  Google Scholar 

  • Lee K.S., Frank S., Vanderklish P., et al. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 1991, 88:7233–7237

    Article  PubMed  CAS  Google Scholar 

  • Lees G.T. and Leong W. The sodium-potassium ATPase inhibitor ouabain is neurotoxic in the rat substantia nigra and striatum. Neurosci Lett 1995, 188:113–116

    Article  PubMed  CAS  Google Scholar 

  • Lei S.Z., Zhang D., Abele A.E. et al. Blockade of NMDA receptor-mediated mobilization of intracellular Ca2+ prevents neurotoxicity. Brain Res 1992, 598:196–202

    Article  PubMed  CAS  Google Scholar 

  • Lerner-Natoli M., Rondouin G., de Block F., et al. Chronic NO synthase inhibition fails to protect hippocampal neurons against NMDA toxicity. Neuroreport 1992, 3:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Lucas D.R. and Newhouse J. P. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Ophthalmol., 1957, 58:193–201.

    Article  CAS  Google Scholar 

  • Majewska M.D. and Bell J.A. Ascorbic acid protects neurons from injury induced by glutamate and NMDA. NeuroReport 1990, 1:194–196

    Article  PubMed  CAS  Google Scholar 

  • Manev H., Favaron M., Siman R., et al. Glutamate neurotoxicity is independent of calpain 1 inhibition in primary cultures of cerebellar granule cells. J Neurochem 1991, 57: 1288–1295

    Article  PubMed  CAS  Google Scholar 

  • Massieu L., Morales-Villagran A., Tapia R. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J. Neurochem, 1995, 64:2262–2272

    Article  PubMed  CAS  Google Scholar 

  • Moncada C., Lekieffre D., Arvin B., et al. Effect of NO synthase inhibition on NMDA-and ischaemia-induced hippocampal lesions. Neuroreport 1992, 3:530–532

    Article  PubMed  CAS  Google Scholar 

  • Moore P.K., Wallace P., Gaffen Z., et al. Characterization of the novel nitric oxide synthase inhibitor 7-nitroindazole and related indazoles. Antinociceptive and cardiovascular effects. BrJ Pharmacol 1993, 110:219–224

    Article  CAS  Google Scholar 

  • Nicholls D.G. and Budd S.L. Mitochondria and neuronal survival. Physiol Rev 2000, 80:315–360

    PubMed  CAS  Google Scholar 

  • Novelli A., Reilly J.A., Lysko P.G., et al. Glutamate becomes neurotoxic via the N-methylD-aspartate receptor, when intracellular energy levels are reduced. Brain Res 1988, 451:205–212

    Article  PubMed  CAS  Google Scholar 

  • Olney J.W. Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 1969, 164: 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Randall R.D. and Thayer S.A. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992, 12: 1882–1895

    PubMed  CAS  Google Scholar 

  • Reynolds I.J. and Hastings, T.G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosc 1995, 15:3318–3327

    CAS  Google Scholar 

  • Rothman S.R. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 1984, 4: 1884–1891

    PubMed  CAS  Google Scholar 

  • Sattler R., Xiong Z., Lu W.Y., Hafner M., MacDonald J.F., Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 1999, 284:1845–1848

    Article  PubMed  CAS  Google Scholar 

  • Schulz J.B., Henshaw D.R., Siwek D. et al. Involvement of free radicals in excitotoxicity in vivo. J Neurochem 1995, 64:2239–2247

    Article  PubMed  CAS  Google Scholar 

  • Schulz J.B., Matthews R.T., Henshaw D.R., et al. Inhibition of neuronal nitric oxide synthase (NOS) protects against neurotoxicity produced by 3-nitropropionic acid, malonate and MPTP. Soc Neurosci Abst 1994, 20:1661

    Google Scholar 

  • Siman R. and Noszek J. C. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1988, 1:279–287

    Article  PubMed  CAS  Google Scholar 

  • Stout A.K., Raphael H.M., Kanterewicz B.I., Klann E., Reynolds I.J. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998, 1:366–373

    Article  PubMed  CAS  Google Scholar 

  • Sun A.Y., Cheng Y., Bu Q., et al. The biochemical mechanisms of the excitotoxicity of kainic acid. Free radical formation. Mol Chem Neuropathol 1992, 17:51–63

    Article  PubMed  CAS  Google Scholar 

  • Tymianski M., Charlton M.P., Carlen P. L. et al. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci 1993, 13:2085–2104

    PubMed  CAS  Google Scholar 

  • Tymianski M., Wallace M.C., Spigelman I., et al. Cell-permanent Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 1993, 11:221–235

    Article  PubMed  CAS  Google Scholar 

  • Wang G.J., Randall R.D., and Thaymer S. A. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J Neurophysiol 1994, 72:2563–2569

    PubMed  CAS  Google Scholar 

  • White R. J. and Reynolds I. J. Mitochondria and Na+/Ca2+ exchange buffer glutamateinduced calcium loads in cultured cortical neurons. J Neurosci 1995, 15:1318–1328

    PubMed  CAS  Google Scholar 

  • Yoshida T., Limmroth Y., Irikura K., et al. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 1994, 14:924–929

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk G.D. and Nicklas W.J. Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina. J Pharmacol Exp Ther 1990, 253:1285–1292

    PubMed  CAS  Google Scholar 

  • Zeevalk G.D. and Nicklas W.J. Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharmacol Exp Ther 1991, 257:870–878

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beal, M.F. (2004). Introduction and Historical Notes. In: Ferrarese, C., Beal, M.F. (eds) Excitotoxicity in Neurological Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8959-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8959-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4736-1

  • Online ISBN: 978-1-4419-8959-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics