Skip to main content
Log in

The biochemical mechanisms of the excitotoxicity of Kainic acid

Free radical formation

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

An Erratum to this article was published on 01 December 1993

Abstract

Kainic acid (KA) is a known potent neuroexcitotoxin, although the biochemical mechanism producing its underlying neurotoxic effect is not quite clear. Histopathological examination of gerbil brains 24 h after systemic injection of KA revealed severe neuronal lesions in different regions of the brain,expecially the cerebellar and hippocampal areas. We have detected free radical formation in the brain 1 h after KA administration by using an in vivo spin trapping technique. We have also observed increased lipid peroxidation in the brain after KA-treatment by analyzing thiobarbituric acid reactive substances and conjugated diene formation. Diminished brain specific (Na+, K+)-ATPase activity was also found 2 h after KA injection and persisted to 24 h. It is possible that the free radical reaction is a primary cause of neuronal degeneration after KA administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad F. F., Cowan D. L., and Sun A. Y. (1987) Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil.Life Sci. 41, 2469–2475.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F., Kowall N. W., Ellison D. W., Mazurek M. F., Swartz K. F., and Martin J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid.Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky E., Riveros N., Sanchez-Ormass S., and Orreg F. (1983) KainateN-methyl aspartate and other excitatory amino acid increases in calcium influx into rat brain cortex cells in vitro.Neurosci. Lett. 36, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Biziere K. and Coyle J. T. (1978) Effects of kainic acid on ion distribution and ATP levels of striatal slices incubated in vitro.J. Neurochem. 31, 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Bloom R. J. and Westerfield W. W. (1971) The thiobarbituric acid reaction in relation to fatty livers.Arch. Biochem. Biophys. 145, 669–675.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Chu L., Chen S. F., Carlson E. J., and Epstein C. J. (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase.Stroke 21 (Suppl. 3), 80–82.

    Google Scholar 

  • Chen G., Griffin M., Poyer J. L., and McCay P. B. (1990) HPLC procedure for the pharmacokinetic study of the spin-trapping agent, α-phenyl-N-tert-butyl nitrone.Free Radical Biol. Med. 8, 93–98.

    Article  Google Scholar 

  • Cheng Y., Bu Q., Oldfield F. F., Cowan D. L., and Sun A. Y. (1990) The biochemical mechanism of the excitotoxicity of kainic acid.Free Radical Biol. Med. 9(Suppl. 1), 106 (abstract).

    Article  Google Scholar 

  • Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neurosci. Lett. 58, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1988) Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage.Trends Neurosci. 11, 465–469.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W., Koh J. Y., and Peters S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists.J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  • Coyle J. T. (1988) Neurotoxic actions of kainic acid.J. Neurochem. 41, 1–11.

    Google Scholar 

  • Coyle J. T. and Schwarcz R. (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea.Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Dumuis A., Sebben M., Haynes L. Pin L.-P., and Bockaert J. (1988) NMDA receptors activate the arachidonate cascade system in striatal neurons.Nature 336, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Dykens J. A., Stern A., and Trenkner E. (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury.J. Neurochem. 49, 1222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Freeman B. A. and Crapo J. D. (1982) Free radicals and tissue injury.Lab. Investig. 47, 412–426.

    PubMed  CAS  Google Scholar 

  • Gee D. L. and Tappel A. L. (1981) Production of volatile hydrocarbons by isolated hepatocytes: An in vitro model for lipid peroxidation studies.Toxicol. Appl. Pharmacol. 60, 112–120.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M. P., Viseskul V., and Choi D. W. (1988) Phencyclidine receptor ligands attenuate cortical neuronal injury afterN-methyl-d-aspartate exposure or hypoxia.J. Pharmacol. Exp. Ther. 245, 1081–1087.

    PubMed  CAS  Google Scholar 

  • Gutteridge J. M. C. and Halliwell B. (1990) The measurement and mechanisms of lipid peroxidation in biological systems.Trends Biochem. Sci. 15, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Koh J. Y. and Choi D. W. (1988) Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively sensitive to injury by NMDA receptor agonists.Brain Res 446, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz J. W., Leu V., Sun G. Y., and Sun A. Y. (1983) Arachidonic acid release from K+-evoked depolarization of brain synaptosomes.Neurochem. Int. 5, 471–478.

    Article  CAS  Google Scholar 

  • Lazarewicz J. W., Lehman A., Hagverg H., and Hamberger A. (1986) Effects of kainic acid on brain calcium fluxes studied in vivo and in vitro.J. Neurochem. 46, 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz J. N., Wroblewski J. T., Palmer M. E., and Costa E. (1988) Activation ofN-methyl-d-aspartate sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granular cells.Neuropharmacology 27, 765–770.

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz J. N., Wroblewski J. T., and Costa E. (1990)N-methyl-d-aspartate sensitive glutamate receptors induce, calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells.J. Neurochem. 55, 1875–1881.

    Article  PubMed  CAS  Google Scholar 

  • Lothman E. W. and Collins R. L. (1981) Kainic acid induced limbic seizure: Metabolic, behavioral, electroencephalographic and neuropathological correlates.Brain Res. 218, 299–318.

    Article  PubMed  CAS  Google Scholar 

  • McGeer E. G., McGeer P. L., and Singh K. (1978) Kainate induced degeneration of neostriatal neurons: Dependency upon the corticostriatal tract.Brain Res. 132, 381–383.

    Article  Google Scholar 

  • Meldrum B. and Garthwaite J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 11, 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan D. T. and Cotman C. W. (1982) Distribution of3H-kainate binding sites in rat CNS as determined by autoradiography.Brain Res. 252, 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Murphy S. N., Thayer S. A., and Miller R. J. (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro.J. Neurosci. 1, 4145–4158.

    Google Scholar 

  • Murphy T. H., Miyamoto M., Sastre A., Schraar R. L., and Coyle J. T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.Neuron 2, 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield F. F., Cowan D. L., and Sun A. Y. (1991) The involvement of ethanol in the free radical reaction of 6-hydroxydopamine.Neurochem. Res. 16, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., Price M. T., Samson L., and Labruyere J. (1986) The role of specific ions in glutamate neurotoxicity.Neuroscience 65, 65–71.

    CAS  Google Scholar 

  • Olney J., Price M., Salles K. S., Labruyere J., and Frierdich G. (1987) MK-801 powerfully protects againstN-methyl aspartate neurotoxicity.Eur. J. Pharmacol. 141, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Recknagel R. O. and Ghoshal A. K. (1966) Quantitative estimation of peroxidative degeneration of rat-liver microsomal and mitochondrial lipids after carbon tetrachloride poisoning.Exp. Mol. Pathol. 5, 413–426.

    Article  PubMed  CAS  Google Scholar 

  • Reinke L. A., Lai E. K., DuBose C. M., and McCay P. B. (1987) Reactive free radical generationin vivo in heart and liver of ethanol-fed rats: Correlations with radical formationin vitro.Proc. Natl. Acad. Sci. USA 84, 9223–9227.

    Article  PubMed  CAS  Google Scholar 

  • Retz K. C. and Coyle J. T. (1982) The effects of kainic acid on high energy metabolites in the mouse striatum.J. Neurochem. 38, 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Rose K., Bruno V. M. G., Oliker R., and Choi O. N. (1990) Nordihydroguaiaretic acid attenuates slow excitatory amino acid-induced neuronal degeneration in cortical cultures.Soc. Neurosci. Abstract 16, 288.

    Google Scholar 

  • Rothman S. M. (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx.J. Neurosci. 5, 1483–1489.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1984) Cerebral circulation and metabolism.J. Neurosurg. 60, 885–908.

    Google Scholar 

  • Slater T. F. (1984) Free-radical mechanisms in tissue injury.Biochem. J. 222, 1–15.

    PubMed  CAS  Google Scholar 

  • Stenram U. (1953) The specificity of the gallocyanin chromalum stain for nucleic acids as studied by the ribonuclease technique.Exp. Cell Res. 4, 383–389.

    Article  CAS  Google Scholar 

  • Sun A. Y. (1972) The effect of lipoxidation on synaptosomal (Na+, K+)-ATPase isolated from the cerebral cortex of squirrel monkey.Biochim. Biophys. Acta 266, 350–360.

    Article  PubMed  CAS  Google Scholar 

  • Sun A. Y. (1974) The effect of phospholipases on the active uptake of norepinephrine by synaptosomes isolated from the cerebral cortex of guinea pig.J. Neurochem. 22, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Sun A. Y. and Sun G. Y. (1976) Functional role of phospholipids of synaptosomal membranes, inFunction and Metabolism of Phospholipids in the Central and Peripheral Systems (Porcellati G., Amaducci L., and Galli C., eds.), pp. 169–197, Plenum, New York.

    Google Scholar 

  • Sun A. Y., Cheng Y., and Sun G. Y. (1992) Kainic acid-induced excitotoxicity in neurons and glial cells.Prog. Brain Res. (in press).

  • Unnerstall J. R. and Wamsley J. K. (1983) Autoradiographic localization of high-affinity3H-kainate binding sites in the rat forebrain.Eur. J. Pharmacol. 86, 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Weiloch T. (1985) Hypoglycemic-induced neuronal damage is prevented byN-methyl-d-aspartate receptor antagonist.Science 230, 681–683.

    Article  Google Scholar 

  • Wroblewski J. T., Nicoletti F., and Costa E. (1989) Different coupling of excitatory amino acids receptors with Ca2+ channels in primary culture of cerebellar granule cells.Neuropharmacology 241, 919–921.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03160079.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A.Y., Cheng, Y., Bu, Q. et al. The biochemical mechanisms of the excitotoxicity of Kainic acid. Molecular and Chemical Neuropathology 17, 51–63 (1992). https://doi.org/10.1007/BF03159981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159981

Index Entries

Navigation