Skip to main content

Hypoxia and Hypoxia Inducible Factors (HIF) as Important Regulators of Tumor Physiology

  • Chapter
Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

Regions of low oxygen tension are common findings in malignant tumors and are associated with increased frequency of tumor invasion and metastasis. Indeed, the ability to initiate homeostatic responses and adapt to hypoxia, e.g. by induction of angiogenesis, represents an important and crucial aspect in solid tumor growth. A significant advance in our understanding of the hypoxia response stems from the discovery of the hypoxia inducible factors (HIF) which act as key regulators of hypoxia-induced gene expression. Both, low levels of oxygen, apparently via reduced activity of a recently identified class of 2oxoglutarate dependent oxygenases, and various tumor specific genetic alterations synergistically act to induce the HIF system. A widespread HIF activation can be observed in a variety of malignant tumors including brain tumors. The HIF system induces adaptive responses including angiogenesis, glycolysis, and pH regulation which confer increased resistance towards the hostile tumor microenvironment. Apart from protumorigenic the wide-ranging HIF pathway is known to harbor antitumorigenic components, which may, however, be disabled by tumor specific genetic alterations. Thus, mounting evidence has identified HIF as a crucial regulator of tumor growth and progression constituting an intriguing and novel target for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, T. and Plate, K. H. (2002) A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med 80:562–575

    Article  PubMed  CAS  Google Scholar 

  2. Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  3. Wang, G. L. and Semenza, G. L. (1995) Purification and characterization of hypoxiainducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  4. Ema, M., Taya, S., Yokotani, N., Sogawa, K., Matsuda, Y., and Fujii-Kuriyama, Y. (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor lalpha regulates the VEGF pression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94:4273–4278

    Article  PubMed  CAS  Google Scholar 

  5. Flamme, I., Frohlich, T., von Reutern, M., Kappel, A., Damert, A., and Risau, W. (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63:51–60

    Article  PubMed  CAS  Google Scholar 

  6. Hogenesch, J. B., Chan, W. K., Jackiw, V. H., Brown, R. C., Gu, Y. Z., Pray-Grant, M., Perdew, G. H., and Bradfield, C. A. (1997) Characterization of a subset of the basic-helixloop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    Article  PubMed  CAS  Google Scholar 

  7. Tian, H., McKnight, S. L., and Russell, D. W. (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  8. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L., and Bradfield, C. A. (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  9. Wiesener, M. S., Turley, H., Allen, W. E., Willam, C., Eckardt, K. U., Talks, K. L., Wood, S. M., Gatter, K. C., Harris, A. L., Pugh, C. W., Ratcliffe, P. J., and Maxwell, P. H. (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-lalpha. Blood 92: 2260–2268.

    PubMed  CAS  Google Scholar 

  10. Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., Poellinger, L., and Fujii-Kuriyama, Y. (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  11. O’Rourke, J. F., Tian, Y. M., Ratcliffe, P. J., and Pugh, C. W. (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxiainducible factor-lalpha. J Biol Chem 274:2060–2071.

    Article  PubMed  Google Scholar 

  12. Salceda, S. and Caro, J. (1997) Hypoxia-inducible factor lalpha (HIF-lalpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647.

    Article  PubMed  CAS  Google Scholar 

  13. Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998) Regulation of hypoxia-inducible factor lalpha is mediated by an 02- dependent degradation domain via the ubiquitinproteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992.

    Article  PubMed  CAS  Google Scholar 

  14. Kallio, P. J., Wilson, W. J., O’Brien, S., Makino, Y., and Poellinger, L. (1999) Regulation of the hypoxia-inducible transcription factor lalpha by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525.

    Article  PubMed  CAS  Google Scholar 

  15. Sutter, C. H., Laughner, E., and Semenza, G. L. (2000) Hypoxia-inducible factor lalpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci U S A 97:4748–4753.

    Article  PubMed  CAS  Google Scholar 

  16. Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R., and Semenza, G. L. (1997) Transactivation and inhibitory domains of hypoxia-inducible factor lalpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260.

    Article  PubMed  CAS  Google Scholar 

  17. Gu, J., Milligan, J., and Huang, L. E. (2001) Molecular mechanism of hypoxia-inducible factor I alpha -p300 interaction. A leucine-rich interface regulated by a single cysteine. J Biol Chem 276:3550–3554.

    Article  PubMed  CAS  Google Scholar 

  18. Arany, Z., Huang, L. E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M. A., Bunn, H. F., and Livingston, D. M. (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 93:12969–12973.

    Article  PubMed  CAS  Google Scholar 

  19. Kallio, P. J., Okamoto, K., O’Brien, S., Carrero, P., Makino, Y., Tanaka, H., and Poellinger, L. (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-lalpha. EMBO J 17:6573–6586.

    Article  PubMed  CAS  Google Scholar 

  20. Carrero, P., Okamoto, K., Coumailleau, P., O’Brien, S., Tanaka, H., and Poellinger, L. (2000) Redox-regulated recruitment of the transcriptional coactivators CREB- binding protein and SRC-1 to hypoxia-inducible factor I alpha. Mol Cell Biol 20:402–415.

    Article  PubMed  CAS  Google Scholar 

  21. Lando, D., Pongratz, I., Poellinger, L., and Whitelaw, M. L. (2000) A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1 alpha and the HIF-like factor. J Biol Chem 275:4618–4627.

    Article  PubMed  CAS  Google Scholar 

  22. Semenza, G. L. (1999) Regulation of mammalian 02 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu, H. and Bunn, H. F. (1999) Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir Physiol 115:239–247.

    Article  PubMed  CAS  Google Scholar 

  24. Wenger, R. H. (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203 Pt 8:1253–1263.

    Google Scholar 

  25. Porwol, T., Ehleben, W., Brand, V., and Acker, H. (2001) Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species. Respir Physiol 128:331–348.

    Article  PubMed  CAS  Google Scholar 

  26. Pugh, C. W., O’Rourke, J. F., Nagao, M., Gleadle, J. M., and Ratcliffe, P. J. (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214.

    Article  PubMed  CAS  Google Scholar 

  27. Srinivas, V., Zhang, L. P., Zhu, X. H., and Caro, J. (1999) Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 260:557–561.

    Article  PubMed  CAS  Google Scholar 

  28. Yu, F., White, S. B., Zhao, Q., and Lee, F. S. (2001) Dynamic, Site-specific Interaction of Hypoxia-inducible Factor-1 alpha with the von Hippel-Lindau Tumor Suppressor Protein. Cancer Res 61:4136–4142.

    PubMed  CAS  Google Scholar 

  29. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M., and Krek, W. (1999) The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 13:1822–1833.

    Article  PubMed  CAS  Google Scholar 

  30. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275.

    Article  PubMed  CAS  Google Scholar 

  31. Stebbins, C. E., Kaelin, W. G., Jr., and Pavletich, N. P. (1999) Structure of the VHLElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461.

    Article  PubMed  CAS  Google Scholar 

  32. Cockman, M. E., Masson, N., Mole, D. R., Jaakkola, P., Chang, G. W., Clifford, S. C., Maher, E. R., Pugh, C. W., Ratcliffe, P. J., and Maxwell, P. H. (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741.

    Article  PubMed  CAS  Google Scholar 

  33. Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., Pavletich, N., Chau, V., and Kaelin, W. G. (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423427.

    Google Scholar 

  34. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R. C., and Conaway, J. W. (2000) Activation of HIFlalpha ubiquitination by a reconstituted von Hippel- Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97:10430–10435.

    Article  PubMed  CAS  Google Scholar 

  35. Tanimoto, K., Makino, Y., Pereira, T., and Poellinger, L. (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19:4298–4309.

    Article  PubMed  CAS  Google Scholar 

  36. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G., Jr. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science 292:464–468.

    Article  PubMed  CAS  Google Scholar 

  37. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., Kriegsheim, Av, Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science 292:468–472.

    Article  PubMed  CAS  Google Scholar 

  38. Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206.

    Article  PubMed  CAS  Google Scholar 

  39. Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., Mukherji, M., Metzen, E., Wilson, M. I., Dhanda, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J., and Ratcliffe, P. J. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  40. Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., Mukherji, M., Metzen, E., Wilson, M. I., Dhanda, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J., and Ratcliffe, P. J. (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  41. Bruick, R. K. and McKnight, S. L. (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340.

    Article  PubMed  CAS  Google Scholar 

  42. Oehme, F., Ellinghaus, P., Kolkhof, P., Smith, T. J., Ramakrishnan, S., Hutter, J., Schramm, M., and Flamme, I. (2002) Overexpression of PH-4, a novel putative proline 4hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 296:343–349.

    Article  PubMed  CAS  Google Scholar 

  43. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J., and Whitelaw, M. L. (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861.

    Article  PubMed  CAS  Google Scholar 

  44. Schofield, C. J. and Zhang, Z. (1999) Structural and mechanistic studies on 2oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9:722–731.

    Article  PubMed  CAS  Google Scholar 

  45. Lando, D., Gorman, J. J., Whitelaw, M. L., and Peet, D. J. (2003) Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 270:781–790.

    Article  PubMed  CAS  Google Scholar 

  46. Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., Dillehay, L. E., Madan, A., Semenza, G. L., and Bedi, A. (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor l alpha. Genes Dev 14:34–44.

    PubMed  CAS  Google Scholar 

  47. Semenza, G. L. (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103.

    Article  PubMed  CAS  Google Scholar 

  48. Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11:293–299.

    Article  PubMed  CAS  Google Scholar 

  49. Hilton, R. L. and Booker, G. W. (2003) The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270:791–798.

    Article  CAS  Google Scholar 

  50. Jeong, J. W., Bae, M. K., Ahn, M. Y., Kim, S. H., Sohn, T. K., Bae, M. H., Yoo, M. A., Song, E. J., Lee, K. J., and Kim, K. W. (2002) Regulation and destabilization of HIFlalpha by ARD 1-mediated acetylation. Cell 111:709–720.

    Article  PubMed  CAS  Google Scholar 

  51. Brown, J. M. and Giaccia, A. J. (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416.

    PubMed  CAS  Google Scholar 

  52. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465.

    PubMed  CAS  Google Scholar 

  53. Wykoff, C. C., Pugh, C. W., Maxwell, P. H., Harris, A. L., and Ratcliffe, P. J. (2000) Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 19:6297–6305.

    Article  PubMed  CAS  Google Scholar 

  54. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L., and Simons, J. W. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  55. Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., and Harris, A. L. (2000) The expression and distribution of the hypoxia-inducible factors HIF1 alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421.

    Article  PubMed  CAS  Google Scholar 

  56. Plate, K. H., Breier, G., Weich, H. A., and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848.

    Article  PubMed  CAS  Google Scholar 

  57. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.

    Article  PubMed  CAS  Google Scholar 

  58. Darnell, A., Machein, M., Breier, G., Fujita, M. Q., Hanahan, D., Risau, W., and Plate, K. H. (1997) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57:3860–3864.

    Google Scholar 

  59. Dachs, G. U., Patterson, A. V., Firth, J. D., Ratcliffe, P. J., Townsend, K. M., Stratford, I. J., and Harris, A. L. (1997) Targeting gene expression to hypoxic tumor cells. Nat Med 3:515–520.

    Article  PubMed  CAS  Google Scholar 

  60. Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simons, J. W., and Semenza, G. L. (2000) Expression of hypoxia-inducible factor lalpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618.

    Article  PubMed  CAS  Google Scholar 

  61. Krieg, M., Haas, R., Brauch, H., Acker, T., Flamme, I., and Plate, K. H. (2000) Up-regulation of hypoxia-inducible factors HIF-lalpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19:5435–5443.

    Article  PubMed  CAS  Google Scholar 

  62. Elson, D. A., Ryan, H. E., Snow, J. W., Johnson, R., and Arbeit, J. M. (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-lalpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60:6189–6195.

    PubMed  CAS  Google Scholar 

  63. Plate, K. H. (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320.

    Article  PubMed  CAS  Google Scholar 

  64. Smits, A. and Funa, K. (1998) Platelet-derived growth factor (PDGF) in primary brain tumours of neuroglial origin. Histol Histopathol 13:511–520.

    PubMed  CAS  Google Scholar 

  65. Plate, K. H. and Risau, W. (1995) Angiogenesis in malignant gliomas. Glia 15:339–347.

    Article  PubMed  CAS  Google Scholar 

  66. Bimer, P., Schindl, M., Obermair, A., Plank, C., Breitenecker, G., and Oberhuber, G. (2000) Overexpression of hypoxia-inducible factor lalpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60:4693–4696.

    Google Scholar 

  67. Aebersold, D. M., Burri, P., Beer, K. T., Laissue, J., Djonov, V., Greiner, R. H., and Semenza, G. L. (2001) Expression of hypoxia-inducible factor-lalpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916.

    Google Scholar 

  68. Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., Turley, H., Talks, K., Pezzella, F., Gatter, K. C., and Harris, A. L. (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85:881–890.

    Article  PubMed  CAS  Google Scholar 

  69. Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Insights into the role of the von Hippel-Lindau gene product. A key player in hypoxic regulation. Exp Nephrol 9:235–240.

    Article  PubMed  CAS  Google Scholar 

  70. Yang, H. and Kaelin, W. G., Jr. (2001) Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Differ 12:447–455.

    PubMed  CAS  Google Scholar 

  71. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  72. Giaccia, A. J. and Kastan, M. B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983.

    Article  PubMed  CAS  Google Scholar 

  73. Blagosklonny, M. V., An, W. G., Romanova, L. Y., Trepel, J., Fojo, T., and Neckers, L. (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273:11995–11998.

    Article  PubMed  CAS  Google Scholar 

  74. An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., and Neckers, L. M. (1998) Stabilization of wild-type p53 by hypoxia-inducible factor lalpha. Nature 392:405–408.

    Article  PubMed  CAS  Google Scholar 

  75. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H., and Parsons, R. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947.

    Article  PubMed  CAS  Google Scholar 

  76. Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., Simons, J. W., and Semenza, G. L. (2000) Modulation of hypoxia-inducible factor I alpha expression by the epidermal growth factor/phosphatidylinositol 3- kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545.

    PubMed  CAS  Google Scholar 

  77. Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., Gottschalk, A. R., Ryan, H. E., Johnson, R. S., Jefferson, A. B., Stokoe, D., and Giaccia, A. J. (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: 391–396.

    PubMed  CAS  Google Scholar 

  78. Jiang, B. H., Agani, F., Passaniti, A., and Semenza, G. L. (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57:5328–5335.

    PubMed  CAS  Google Scholar 

  79. Penuel, E. and Martin, G. S. (1999) Transformation by v-Src: Ras-MAPK and PI3KmTOR mediate parallel pathways. Mol Biol Cell 10:1693–1703.

    PubMed  CAS  Google Scholar 

  80. Conrad, P. W., Freeman, T. L., Beitner-Johnson, D., and Millhorn, D. E. (1999) EPASI trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274:33709–33713.

    Article  PubMed  CAS  Google Scholar 

  81. Richard, D. E., Berra, E., Gothie, E., Roux, D., and Pouyssegur, J. (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1 alpha (HIFlalpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637.

    Article  PubMed  CAS  Google Scholar 

  82. Blancher, C., Moore, J. W., Robertson, N., and Harris, A. L. (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-lalpha, HIF2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3’-kinase/Akt signaling pathway. Cancer Res 61:7349–7355.

    PubMed  CAS  Google Scholar 

  83. Jiang, B. H., Jiang, G., Zheng, J. Z., Lu, Z., Hunter, T., and Vogt, P. K. (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369.

    PubMed  CAS  Google Scholar 

  84. Zelzer, E., Levy, Y., Kahana, C., Shilo, B. Z., Rubinstein, M., and Cohen, B. (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIFlalpha/ARNT. EMBO J 17:5085–5094.

    Article  PubMed  CAS  Google Scholar 

  85. Feldser, D., Agani, F., lyer, N. V., Pak, B., Ferreira, G., and Semenza, G. L. (1999) Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res 59:3915–3918.

    PubMed  CAS  Google Scholar 

  86. Richard, D. E., Berra, E., and Pouyssegur, J. (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1 alpha in vascular smooth muscle cells. J Biol Chem 275:26765–26771.

    PubMed  CAS  Google Scholar 

  87. Agani, F. and Semenza, G. L. (1998) Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity. Mol Pharmacol 54:749–754.

    PubMed  CAS  Google Scholar 

  88. Bruick, R. K. (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97:9082–9087.

    Article  PubMed  CAS  Google Scholar 

  89. Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H., and Harris, A. L. (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673.

    PubMed  CAS  Google Scholar 

  90. Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gass-mann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L. (1998) Cellular and developmental control of 02 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12: 149–162.

    Article  PubMed  CAS  Google Scholar 

  91. Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., and Caro, J. (2002) Hypoxia-inducible Factor-1-mediated Expression of the 6-Phosphofructo2- kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) Gene. ITS POSSIBLE ROLE IN THE WARBURG EFFECT. J Biol Chem 277:6183–6187.

    Article  PubMed  CAS  Google Scholar 

  92. Schwickert, G., Walenta, S., Sundfor, K., Rofstad, E. K., and Mueller-Klieser, W. (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759.

    PubMed  CAS  Google Scholar 

  93. Brizel, D. M., Schroeder, T., Scher, R. L., Walenta, S., Clough, R. W., Dewhirst, M. W., and Mueller-Klieser, W. (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353

    Article  PubMed  CAS  Google Scholar 

  94. Lu, H., Forbes, R. A., and Verma, A. (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem

    Google Scholar 

  95. Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R. R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R. S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, 0., Aittomaki, K., Hietala, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., and Aaltonen, L. A. (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410.

    Article  PubMed  CAS  Google Scholar 

  96. Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., van der, Mey A., Taschner, P. E., Rubinstein, W. S., Myers, E. N., Richard, C. W., III, Cornelisse, C. J., Devilee, P., and Devlin, B. (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851.

    Article  PubMed  CAS  Google Scholar 

  97. Niemann, S. and Muller, U. (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270.

    Article  PubMed  CAS  Google Scholar 

  98. Astuti, D., Latif, F., Dallol, A., Dahia, P. L., Douglas, F., George, E., Skoldberg, F., Husebye, E. S., Eng, C., and Maher, E. R. (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69: 49–54.

    Article  PubMed  CAS  Google Scholar 

  99. Brand, K. A. and Hermfisse, U. (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395.

    PubMed  CAS  Google Scholar 

  100. Helmlinger, G., Yuan, F., Dellian, M., and Jain, R. K. (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182.

    Article  PubMed  CAS  Google Scholar 

  101. Ivanov, S. V., Kuzmin, I., Wei, M. H., Pack, S., Geil, L., Johnson, B. E., Stanbridge, E. J., and Lerman, M. I. (1998) Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95:12596–12601.

    Article  PubMed  CAS  Google Scholar 

  102. Yamagata, M., Hasuda, K., Stamato, T., and Tannock, I. F. (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726–1731.

    Article  PubMed  CAS  Google Scholar 

  103. Wykoff, C. C., Beasley, N. J., Watson, P. H., Turner, K. J., Pastorek, J., Sibtain, A., Wilson, G. D., Turley, H., Talks, K. L., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., and Harris, A. L. (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083.

    PubMed  CAS  Google Scholar 

  104. Ivanov, S., Liao, S. Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G., Merrill, M. J., Proescholdt, M. A., Oldfield, E. H., Lee, J., Zavada, J., Waheed, A., Sly, W., Lerman, M. I., and Stanbridge, E. J. (2001) Expression of hypoxiainducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919.

    Article  PubMed  CAS  Google Scholar 

  105. Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257.

    Article  PubMed  CAS  Google Scholar 

  106. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364.

    Article  PubMed  CAS  Google Scholar 

  107. Fox, S. B. (1997) Tumour angiogenesis and prognosis. Histopathology 30:294–301.

    Article  PubMed  CAS  Google Scholar 

  108. Ferrara, N. and Davis-Smyth, T. (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25.

    Article  PubMed  CAS  Google Scholar 

  109. Zetter, B. R. (1998) Angiogenesis and tumor metastasis. Annu Rev Med 49:407–424.

    Article  PubMed  CAS  Google Scholar 

  110. Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  111. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J. (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Google Scholar 

  112. Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T. (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312

    Article  PubMed  CAS  Google Scholar 

  113. Vaupel, P. W. (1993) Oxygenation of solid tumors. 53–58

    Google Scholar 

  114. Burger, P. C. and Green, S. B. (1987) Patient age, histologic features, and length of survival in patients with glioblastoma multiforme. Cancer 59:1617–1625.

    Article  PubMed  CAS  Google Scholar 

  115. Levy, A. P., Levy, N. S., and Goldberg, M. A. (1996) Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von HippelLindau protein. J Biol Chem 271:25492–25497.

    Article  PubMed  CAS  Google Scholar 

  116. Liu, Y., Cox, S. R., Morita, T., and Kourembanas, S. (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res 77:638–643.

    Article  PubMed  CAS  Google Scholar 

  117. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., and Semenza, G. L. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613.

    PubMed  CAS  Google Scholar 

  118. Ikeda, E., Achen, M. G., Breier, G., and Risau, W. (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270:19761–19766.

    Article  PubMed  CAS  Google Scholar 

  119. Stein, 1., Neeman, M., Shweiki, D., Itin, A., and Keshet, E. (1995) Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15:5363–5368.

    Google Scholar 

  120. Levy, A. P., Levy, N. S., and Goldberg, M. A. (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753.

    Article  PubMed  CAS  Google Scholar 

  121. Levy, N. S., Chung, S., Furneaux, H., and Levy, A. P. (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–6423

    Article  PubMed  CAS  Google Scholar 

  122. Goldberg, I., Furneaux, H., and Levy, A. P. (2002) A 40óp RNA element that mediates stabilization of VEGF mRNA by HuR. J Biol Chem

    Google Scholar 

  123. Shih, S. C. and Claffey, K. P. (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274:1359–1365.

    Article  PubMed  CAS  Google Scholar 

  124. Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z., and Keshet, E. (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    PubMed  CAS  Google Scholar 

  125. Ozawa, K., Kondo, T., Hori, O., Kitao, Y., Stern, D. M., Eisenmenger, W., Ogawa, S., and Ohshima, T.Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport

    Google Scholar 

  126. Kremer, C., Breier, G., Risau, W., and Plate, K. H. (1997) Up-regulation of fik1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57:3852–3859.

    PubMed  CAS  Google Scholar 

  127. Roberts, W. G. and Palade, G. E. (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57:765–772.

    PubMed  CAS  Google Scholar 

  128. Ferrara, N. (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803.

    Article  PubMed  CAS  Google Scholar 

  129. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.

    Article  PubMed  CAS  Google Scholar 

  130. Beck, H., Acker, T., Wiessner, C., Allegrini, P. R., and Plate, K. H. (2000) Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 157:1473–1483.

    Article  PubMed  CAS  Google Scholar 

  131. Acker, T., Beck, H., and Plate, K. H. (2001) Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev 108: 45–57.

    Article  PubMed  CAS  Google Scholar 

  132. Oh, H., Takagi, H., Suzuma, K., Otani, A., Matsumura, M., and Honda, Y. (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739.

    Article  PubMed  CAS  Google Scholar 

  133. Stratmann, A., Risau, W., and Plate, K. H. (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466.

    Article  PubMed  CAS  Google Scholar 

  134. Stratmann, A., Acker, T., Burger, A. M., Amann, K., Risau, W., and Plate, K. H. (2001) Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptor-2 dominant-negative receptor mutants. Int J Cancer 91:273–282.

    Article  PubMed  CAS  Google Scholar 

  135. Kimura, H., Braun, R. D., Ong, E. T., Hsu, R., Secomb, T. W., Papahadjopoulos, D., Hong, K., and Dewhirst, M. W. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522–5528.

    PubMed  CAS  Google Scholar 

  136. Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50.

    Article  PubMed  CAS  Google Scholar 

  137. Lauren, J., Gunji, Y., and Alitalo, K. (1998) Is angiopoietin-2 necessary for the initiation of tumor angiogenesis? Am J Pathol 153:1333–1339.

    Article  PubMed  CAS  Google Scholar 

  138. Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514.

    Article  PubMed  CAS  Google Scholar 

  139. Jain, R. K. and Munn, L. L. (2000) Leaky vessels? Call Angl ! Nat Med 6:131–132.

    Article  PubMed  CAS  Google Scholar 

  140. Gerber, H. P., Condorelli, F., Park, J., and Ferrara, N. (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1 /KDR, is up-regulated by hypoxia. J Biol Chem 272:23659–23667.

    Article  PubMed  CAS  Google Scholar 

  141. Kappel, A., Ronicke, V., Damert, A., Flamme, I., Risau, W., and Breier, G. (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93:4284–4292.

    PubMed  CAS  Google Scholar 

  142. Favier, J., Kempf, H., Corvol, P., and Gasc, J. M. (2001) Coexpression of endothelial PAS protein 1 with essential angiogenic factors suggests its involvement in human vascular development. Dev Dyn 222:377–388.

    Article  PubMed  CAS  Google Scholar 

  143. Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K. S. (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563.

    Article  PubMed  CAS  Google Scholar 

  144. Lammert, E., Cleaver, O., and Melton, D. (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567.

    Article  PubMed  CAS  Google Scholar 

  145. Wartenberg, M., Donmez, F., Ling, F. C., Acker, H., Hescheler, J., and Sauer, H. (2001) Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15:995–1005.

    Article  PubMed  CAS  Google Scholar 

  146. Kinzler, K. W. and Vogelstein, B. (1996) Life (and death) in a malignant tumour. Nature 379:19–20.

    Article  PubMed  CAS  Google Scholar 

  147. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  148. Watanabe, K., Tachibana, O., Sata, K., Yonekawa, Y., Kleihues, P., and Ohgaki, H. (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223.

    Article  PubMed  CAS  Google Scholar 

  149. Sidransky, D., Mikkelsen, T., Schwechheimer, K., Rosenblum, M. L., Cavanee, W., and Vogelstein, B. (1992) Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846–847.

    Article  PubMed  CAS  Google Scholar 

  150. Reynolds, T. Y., Rockwell, S., and Glazer, P. M. (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757.

    PubMed  CAS  Google Scholar 

  151. Yuan, J., Narayanan, L., Rockwell, S., and Glazer, P. M. (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376.

    PubMed  CAS  Google Scholar 

  152. Giaccia, A. J. (1996) Hypoxic Stress Proteins: Survival of the Fittest. Semin Radiat Oncol 6:46–58.

    Article  PubMed  Google Scholar 

  153. Graeber, T. G., Peterson, J. F., Tsai, M., Monica, K., Fornace, A. J., Jr., and Giaccia, A. J. (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1 - phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14:6264–6277.

    Article  PubMed  CAS  Google Scholar 

  154. Schmaltz, C., Hardenbergh, P. H., Wells, A., and Fisher, D. E. (1998) Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18:2845–2854.

    PubMed  CAS  Google Scholar 

  155. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., and Giaccia, A. J. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  156. Suzuki, H., Tomida, A., and Tsuruo, T. (2001) Dephosphorylated hypoxia-inducible factor lalpha as a mediator of p53- dependent apoptosis during hypoxia. Oncogene 20:5779–5788.

    Article  PubMed  CAS  Google Scholar 

  157. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., Keshert, E., and Keshet, E. (1998) Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490.

    Article  PubMed  CAS  Google Scholar 

  158. Brusselmans, K., Bono, F., Maxwell, P., Dor, Y., Dewerchin, M., Collen, D., Herbert, J. M., and Carmeliet, P. (2001) Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 276:39192–39196.

    Article  PubMed  CAS  Google Scholar 

  159. Yu, J. L., Rak, J. W., Carmeliet, P., Nagy, A., Kerbel, R. S., and Coomber, B. L. (2001) Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 158:1325–1334.

    Article  PubMed  CAS  Google Scholar 

  160. Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J., and Kerbel, R. S. (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528.

    Article  PubMed  CAS  Google Scholar 

  161. Hockel, M., Schienger, K., Aral, B., Mitze, M., Schaffer, U., and Vaupel, P. (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515.

    PubMed  CAS  Google Scholar 

  162. Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L. J., Bean, J. M., Prosnitz, L. R., and Dewhirst, M. W. (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943.

    PubMed  CAS  Google Scholar 

  163. Yuan, J. and Glazer, P. M. (1998) Mutagenesis induced by the tumor microenvironment. Mutat Res 400:439–446.

    Article  PubMed  CAS  Google Scholar 

  164. Jain, R. K. (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989.

    Article  PubMed  CAS  Google Scholar 

  165. Ido, A., Uto, H., Moriuchi, A., Nagata, K., Onaga, Y., Onaga, M., Hori, T., Hirono, S., Hayashi, K., Tamaoki, T., and Tsubouchi, H. (2001) Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res 61:3016–3021.

    PubMed  CAS  Google Scholar 

  166. Koshikawa, N., Takenaga, K., Tagawa, M., and Sakiyama, S. (2000) Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res 60:2936–2941.

    PubMed  CAS  Google Scholar 

  167. Shibata, T., Giaccia, A. J., and Brown, J. M. (2000) Development of a hypoxiaresponsive vector for tumor-specific gene therapy. Gene Ther 7:493–498.

    Article  PubMed  CAS  Google Scholar 

  168. Greco, O. and Dachs, G. U. (2001) Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 187:22–36.

    Article  PubMed  CAS  Google Scholar 

  169. Brahimi-Horn, C., Berra, E., and Pouyssegur, J. (2001) Hypoxia: the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 11:S32–S36.

    PubMed  CAS  Google Scholar 

  170. Brown, J. M. (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6:157–162.

    Article  PubMed  CAS  Google Scholar 

  171. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K., and Seed, B. (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725.

    Article  PubMed  CAS  Google Scholar 

  172. Grimshaw, M. J. and Balkwill, F. R. (2001) Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation--a potential mechanism. Eur J Immunol 31:480489.

    Google Scholar 

  173. Griffiths, L., Binley, K., Iqball, S., Kan, O., Maxwell, P., Ratcliffe, P., Lewis, C., Harris, A., Kingsman, S., and Naylor, S. (2000) The macrophage - a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7:255–262.

    Article  PubMed  CAS  Google Scholar 

  174. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844.

    Article  PubMed  CAS  Google Scholar 

  175. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., and Ullrich, A. (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579.

    Article  PubMed  CAS  Google Scholar 

  176. Strawn, L. M., McMahon, G., App, H., Schreck, R., Kuchler, W. R., Longhi, M. P., Hui, T. H., Tang, C., Levitzki, A., Gazit, A., Chen, I., Keri, G., Orfi, L., Risau, W., Flamme, I., Ullrich, A., Hirth, K. P., and Shawver, L. K. (1996) Flk-1 as a target for tumor growth inhibition. Cancer Res 56:3540–3545.

    PubMed  CAS  Google Scholar 

  177. Lin, P., Polverini, P., Dewhirst, M., Shan, S., Rao, P. S., and Peters, K. (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078.

    Article  PubMed  CAS  Google Scholar 

  178. Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., Hankinson, O., Pugh, C. W., and Ratcliffe, P. J. (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 94:8104–8109.

    Article  PubMed  CAS  Google Scholar 

  179. Ryan, H. E., Lo, J., and Johnson, R. S. (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015.

    Article  PubMed  CAS  Google Scholar 

  180. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G., and Livingston, D. M. (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  181. Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., Moon, E. J., Kim, H. S., Lee, S. K., Chung, H. Y., Kim, C. W., and Kim, K. W. (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443.

    Article  PubMed  Google Scholar 

  182. Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Bruns, C. J., Zuelke, C., Farkas, S., Anthuber, M., Jauch, K. W., and Geissler, E. K. (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135.

    Article  PubMed  CAS  Google Scholar 

  183. Ryan, H. E., Poloni, M., McNulty, W., Elson, D., Gassmann, M., Arbeit, J. M., and Johnson, R. S. (2000) Hypoxia-inducible factor-lalpha is a positive factor in solid tumor growth. Cancer Res 60:4010–4015.

    PubMed  CAS  Google Scholar 

  184. Blancher, C., Moore, J. W., Talks, K. L., Houlbrook, S., and Harris, A. L. (2000) Relationship of hypoxia-inducible factor (HIF)-lalpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 60:7106–7113.

    PubMed  CAS  Google Scholar 

  185. Volm, M. and Koomagi, R. (2000) Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 20:1527–1533.

    PubMed  CAS  Google Scholar 

  186. Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Hellings, P., Gorselink, M., Heymans, S., Theilmeier, G., Dewerchin, M., Laudenbach, V., Vermylen, P., Raat, H., Acker, T., Vleminckx, V., Van Den, Bosch L., Cashman, N., Fujisawa, H., Drost, M. R., Sciot, R., Bruyninckx, F., Hicklin, D. J., Ince, C., Gressens, P., Lupu, F., Plate, K. H., Robberecht, W., Herbert, J. M., Collen, D., and Carmeliet, P. (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acker, T., Plate, K.H. (2004). Hypoxia and Hypoxia Inducible Factors (HIF) as Important Regulators of Tumor Physiology. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics