Skip to main content

Role of Nitric Oxide in Tumor Angiogenesis

  • Chapter
Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

Nitric oxide (NO) is an important signalling molecule that acts in many tissues to regulate different physiological and pathological processes. We have contributed to demonstrate that NO stimulates angiogenesis and mediates the effect of different angiogenic molecules. In human tumors NOS expression and activity correlate with tumor growth and aggressiveness, through angiogenesis stimulation and regulation of angiogenic factor expression. Drugs affecting the NOS pathway appear promising antitumor strategies by reducing edema, inhibiting angiogenesis and facilitating the delivery of chemotherapeutical agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakshi A., Nag T.C., Wadhwa S., Mahapatra A.K., Sarkar C. The expression of nitric oxide in human brain tumors and peritumoral areas. J Neurol Sci 1998; 15: 196–203.

    Article  Google Scholar 

  2. Bian X., Du L., Chen Z., Shi J., Liu F. A quantitative pathological study on angiogenesis, vascular endothelial growth factor and inducible nitric oxide synthase in astrocytomas. Zhonghua Bing Li Xue Za Zhi. 2001; 30:23–6.

    PubMed  CAS  Google Scholar 

  3. Bing R.J., Miyataka M., Rich K.A., Hanson N., Wang X., Slosser H.D., Shi S.R. Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clin Cancer Res. 2001; 7:3385–92.

    PubMed  CAS  Google Scholar 

  4. Broholm H., Braendstrup O., Lauritzen M. Nitric oxide synthase expression of oligodendrogliomas. Clin Neuropathol. 2001; 20:233–8.

    PubMed  CAS  Google Scholar 

  5. Cheshire D.R. Use of nitric oxide synthase inhibitors for the treatment of inflammatory disease and pain. Drugs 2001; 4: 795–802.

    CAS  Google Scholar 

  6. Chiou W.F., Chou C.J., Chen C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 2001; 69: 625–35.

    Article  PubMed  CAS  Google Scholar 

  7. Cobb J.P. Use of nitric oxide synthase inhibitors to treat septic shock: The light has changed from yellow to red. Crit Care Med 1999; 27: 855–6.

    Article  PubMed  CAS  Google Scholar 

  8. Cobbs C.S., Brenman J.E., Alpade K.D., Bredt D.S., Israel M.A. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 1995; 55: 727–30.

    PubMed  CAS  Google Scholar 

  9. Cook J.A., Krishna M.C., Pacelli R., DeGraff W., Liebmann J., Mitchell J.B., Russo A., Wink D.A. Nitric oxide enhancement of melphalan-induced cytotoxicity. Br J Cancer 1997; 76:325–34.

    Article  PubMed  CAS  Google Scholar 

  10. Dawson T.M., Sasaki M., Gonzalez-Zulueta M., Dawson V.L. Regulation of neuronal nitric oxide synthase and identification of novel nitric oxide signaling pathways. Prog Brain Res. 1998; 118: 3–11.

    CAS  Google Scholar 

  11. de Wilt J.H., Manusama E.R., van Etten B., van Tiel S.T., Joma A.S., Seynhaeve A.L., ten Hagen T.L., Eggermont A.M. Nitric oxide synthase inhibition results in synergistic antitumor activity with melphalan and tumor necrosis factor alpha-based isolated limb perfusions. Br J Cancer. 2000; 83:1176–82.

    Article  PubMed  Google Scholar 

  12. Doi K., Akaike T., Horie H., Noguchi Y., Fuji S., Beppu T., Ogawa M., Maeda H. Excessive production of NO in rat solid tumor and its implication in rapid tumor growth. Cancer 1996; 77:1598–1604.

    PubMed  CAS  Google Scholar 

  13. Ellie E., Loiseau H., Lafond F., Arsaut J., Demotes-Mainard J. Differential expression of inducible nitric oxide synthase in human brain tumors. Neuroreport 1995; 7: 294–6.

    PubMed  CAS  Google Scholar 

  14. Farias-Eisner R., Chaudhuri G., Aeberhard E., Fukuto J.M. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem 1996; 271:6144–51.

    Article  PubMed  CAS  Google Scholar 

  15. Feng C., Wang L., Jiao L., Liu B., Zheng S., Xie X. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer 2002; 2(1):8.

    Article  PubMed  Google Scholar 

  16. Folkman J., Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–4.

    PubMed  CAS  Google Scholar 

  17. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine 1995; 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  18. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757–63.

    Article  PubMed  CAS  Google Scholar 

  19. Franchi A., Gallo O., Paglierani M., Sardi I., Magnelli L., Masini E., Santucci M. Inducible nitric oxide synthase expression in laryngeal neoplasia: correlation with angiogenesis. Head Neck. 2002; 24:16–23.

    Article  PubMed  Google Scholar 

  20. Fricker S.P. Nitrogen monoxide-related disease and nitrogen monoxide scavengers as potential drugs. Met Ions Biol Syst. 1999; 36: 665–721.

    PubMed  CAS  Google Scholar 

  21. Fricker S.P., Slade E., Powell N.A., Vaughan O.J., Henderson G.R., Murrer B.A., Megson I.L., Bisland S.K., Flitney F.W. Ruthenium complexes as nitric oxide scavengers: a potential therapeutic approach to nitric oxide-mediated diseases. Br J Pharmacol 1997, 122: 1441–9.

    Article  PubMed  CAS  Google Scholar 

  22. Fujisawa H., Ogura T., Hokari A., Weisz A., Yamashita J., Esumi H. Inducible nitric oxide synthase in a human glioblastoma cell line. J Neurochem 1995; 64:85–91.

    Article  PubMed  CAS  Google Scholar 

  23. Fukumura D., Yan F., Endo M., Jain R.K. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol 1997; 150:713–25.

    PubMed  CAS  Google Scholar 

  24. Gallo O., Masini E., Morbidelli L., Franchi A., Fini-Storchi I., Vergari W.A., Ziche M. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 1998; 90: 587–96.

    Article  PubMed  CAS  Google Scholar 

  25. Garbossa D., Fontanella M., Pagni C.A., Vercelli A. Nitric oxide synthase and cytochrome c oxidase changes in the tumoral and peritumoral cerebral cortex. Acta Neurochir (Wien) 2001; 143:897–908.

    Article  CAS  Google Scholar 

  26. Garvey E.P., Oplinger J.A., Furfine E.S., Kiff R.J., Laszlo F., Whittle B.J., Knowles R.G. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 1997; 272:4959–63.

    Article  PubMed  CAS  Google Scholar 

  27. Hara E., Takahashi K., Tominaga T., Kumabe T., Kayama T., Suzuki H., Fujita H., Yoshimoto T., Shirato K., Shibahara S. Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun 1996; 224:153–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hood J.D., Ziche M., Granger H.G. VEGF upregulates ecNOS message, protein, and NO production. Am J Physiol 1998; 274: H1054–8.

    PubMed  CAS  Google Scholar 

  29. Hurst R.D., Clark J.B. Nitric oxide-induced blood-brain barrier dysfunction is not mediated by inhibition of mitochondrial respiratory chain activity and/or energy depletion. Nitric Oxide 1997; 1:121–9.

    Article  PubMed  CAS  Google Scholar 

  30. Iwata S., Nakagawa K., Harada H., Oka Y., Kumon Y., Sakaki S. Endothelial nitric oxide synthase expression in tumor vasculature is correlated with malignancy in human supratentorial astrocytic tumors. Neurosurgery 1999; 45:24–8.

    Article  PubMed  CAS  Google Scholar 

  31. Jadeski L.C., Lala P.K. Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 1999; 155:1381–90.

    Article  PubMed  CAS  Google Scholar 

  32. Johansson A.C., Hegardt P., Janelidze S., Visse E., Widegren B., Siesjo P. Enhanced expression of iNOS intratumorally and at the immunization site after immunization with IFNgamma secreting rat glioma cells. J Neuroimmunol 2002; 123:135–43.

    Article  PubMed  CAS  Google Scholar 

  33. Kennovin G.D., Hirst D.G., Stratford M.R.L., Flitney F.W. Inducible nitric oxide synthase is expressed in tumor-associated vasculature: inhibition retards tumors in vivo. In Biology on Nitric Oxide. Vol 4, Enzymology, biochemistry, and immunology, pp. 473–479, Eds Moncada S., Feelisch M., Busse R. Higgs A.E., Portland Press, London, 1994.

    Google Scholar 

  34. Kerwin J.F. Jr., Lancaster J.R. Jr., Feldman P.L. Nitric oxide: A new paradigm for second messengers. J Med Chem 1995; 38: 4343–62.

    Article  PubMed  CAS  Google Scholar 

  35. Klotz T., Bloch W., Volberg C., Engelmann U., Addicks K. Selective expression of inducible nitric oxide synthase in human prostatic carcinoma. Cancer 1998; 82: 1897–903

    Article  PubMed  CAS  Google Scholar 

  36. Knowles R.G., Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298:249–5 8.

    Google Scholar 

  37. Kong G., Kim E.K., Kim W.S., Lee Y.W., Lee J.K., Paik S.W., Rhee J.C., Choi K.W., Lee K.T. Inducible nitric oxide synthase (iNOS) immunoreactivity and its relationship to cell proliferation, apoptosis, angiogenesis, clinicopathologic characteristics, and patient survival in pancreatic cancer. Int J Pancreatol 2001; 29:133–40.

    Article  PubMed  CAS  Google Scholar 

  38. Ludwig H.C., Ahkavan-Shigari R., Rausch S., Schallock K., Quentin C., Ziegler D., Bockermann V., Markakis E. Oedema extension in cerebral metastasis and correlation with the expression of nitric oxide synthase isozymes (NOS I-III). Anticancer Res 2000a; 20:305–10.

    CAS  Google Scholar 

  39. Ludwig H.C., Feiz-Erfan I., Bockermann V., Behnke-Mursch J., Schallock K., Markakis E. Expression of nitric oxide synthase isozymes (NOS I-III) by immunohistochemistry and DNA in situ hybridization. Correlation with macrophage presence, vascular endothelial growth factor (VEGF) and oedema volumetric data in 220 glioblastomas. Anticancer Res 2000b; 20:299–304.

    CAS  Google Scholar 

  40. Marietta M.A. Nitric oxide synthase structure and mechanism. J Biol Chem 1993; 268: 12231–4.

    Google Scholar 

  41. Marrogi A.J., Travis W.D., Welsh J.A., Khan M.A., Rahim H., Tazelaar H., Pairolero P., Trastek V., Jett J., Caporaso N.E., Liotta L.A., Harris C.C. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res 2000; 6:4739–44.

    PubMed  CAS  Google Scholar 

  42. Mitchell J.B., Cook J.A., Krishna M.C., DeGraff W., Gamson J., Fisher J., Christodoulou D., Wink D.A. Radiation sensitisation by nitric oxide releasing agents. Br J Cancer Suppl. 1996; 27:S181–4.

    PubMed  CAS  Google Scholar 

  43. Mitchell J.B., Wink D.A., DeGraff W., Gamson J., Keefer L.K., Krishna M.C. Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 1993; 53:585–8.

    Google Scholar 

  44. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.

    Article  PubMed  CAS  Google Scholar 

  45. Morbidelli L., Chang C.-H., Douglas J.G., Granger H.J., Ledda F., Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium Am J Physiol 1996; 270: H411–5.

    Google Scholar 

  46. Morbidelli L., Donnini S., Mitola S., Ziche M. Nitric oxide modulates the angiogenic phenotype of middle-t transformed endothelial cells. Int J Biochem Cell Biol 2001; 33: 305–13.

    Article  PubMed  CAS  Google Scholar 

  47. Mosi R., Seguin B., Cameron B., Amankwa L., Darkes M.C., Fricker S.P. Mechanistic studies on AMD6221: a ruthenium-based nitric oxide scavenger. Biochem Biophys Res Commun 2002; 292: 519–29.

    Article  PubMed  CAS  Google Scholar 

  48. Orucevic A., Lala P.K. NG-nitroL-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumor growth in adenocarcinoma-bearing mice. Br J Cancer 1996; 73: 189–96.

    Article  PubMed  CAS  Google Scholar 

  49. Parenti A., Morbidelli L., Cui X.L., Douglas J.G., Hood J., Granger H.J., Ledda F., Ziche M. Nitric oxide is an upstream signal for vascular endothelial growth factor-induced extracellular signal-regulated kinases’/z activation in postcapillary endothelium. J Biol Chem 1998; 273: 4220–6.

    Article  PubMed  CAS  Google Scholar 

  50. Parenti A., Morbidelli L., Ledda F., Granger H.J., Ziche M. The bradykinin/B1 receptor promotes angiogenesis by upregulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J 2001; 15: 1487–9.

    PubMed  CAS  Google Scholar 

  51. Parkins C.S., Holder A.L., Hill S.A., Chaplin D.J., Tozer G.M. Determinants of anti-vascular action by combretastatin A-4 phosphate: role of nitric oxide. Br J Cancer 2000; 83: 811–6.

    Article  PubMed  CAS  Google Scholar 

  52. Parratt J.R. Nitric oxide. A key mediator in sepsis and endotoxaemia? J Physiol Pharmacol 1997; 48: 493–506.

    PubMed  CAS  Google Scholar 

  53. Pritchard R., Flitney F.W., Darkes M.A., Fricker, S.P. Ruthenium-based nitric oxide scavengers inhibit tumor growth by reducing tumor vasculature. Clin Exp Metast 1999; 17:776.

    Google Scholar 

  54. Rudic R.D., Shesely E.G., Maeda N., Smithies O., Segal S.S., Sessa W.C. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodelling. J Clin Invest 1998; 101: 731–6.

    Article  PubMed  CAS  Google Scholar 

  55. Salom J.B., Orti M., Centeno J.M., Torregrosa G., Alborch E. Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 2000; 865: 149–56.

    Article  PubMed  CAS  Google Scholar 

  56. Shinoda J., Whittle I.R. Nitric oxide and glioma: a target for novel therapy? Br J Neurosurg 2001; 15: 213–20.

    Article  PubMed  CAS  Google Scholar 

  57. Swaroop G.R., Kelly P.A., Bell H.S., Shinoda J., Yamaguchi S., Whittle I.R. The effects of chronic nitric oxide synthase suppression on glioma pathophysiology. Br J Neurosurg 2000; 14:543–8.

    Article  PubMed  CAS  Google Scholar 

  58. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horizons 1995; 3: 2–32.

    PubMed  CAS  Google Scholar 

  59. Thomsen L.L., Lawton F.G., Knowles R.G., Beesley J.E., Riveros-Moreno V., Moncada S. Nitric oxide synthase activity in human gynaecological cancer. Cancer Res 1994; 54: 1352–4.

    PubMed  CAS  Google Scholar 

  60. Thomsen L.L., Scott J.M.J., Topley P., Knowles R.G., Keerie A.J., Frend A.J. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo. Studies with 1400 W, a novel inhibitor. Cancer Res 1997; 57: 3300–4.

    PubMed  CAS  Google Scholar 

  61. Titheradge M.A. Nitric oxide in septic shock. Biochem Biophys Acta 1999; 1411: 437–55

    Article  PubMed  CAS  Google Scholar 

  62. Tozer G.M., Prise V.E., Chaplin D.J. Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res 1997; 57: 948–55.

    PubMed  CAS  Google Scholar 

  63. Uotila P., Valve E., Martikainen P., Nevalainen M., Nurmi M., Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res. 2001; 29: 23–8.

    Article  PubMed  CAS  Google Scholar 

  64. Verovski V.N., Van den Berge D.L., Soete G.A., Bols B.L., Storme G.A. Intrinsic radio-sensitivity of human pancreatic tumor cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside. Br J Cancer 1996; 74: 1734–42.

    Article  PubMed  CAS  Google Scholar 

  65. Wink DA, Vodovotz Y, Cook JA, Krishna MC, Kim S, Coffin D, DeGraff W, Deluca AM, Liebmann J, Mitchell JB. The role of nitric oxide chemistry in cancer treatment. Biochemistry (Mosc). 1998a;63(7):802–9.

    CAS  Google Scholar 

  66. Wink D.A., Vodovotz Y., Laval J., Laval.F, Dewhirst M.W., Mitchell J.B. The multifaceted roles of nitric oxide in cancer. Cancerogenesis 1998b; 19: 711–21.

    Article  CAS  Google Scholar 

  67. Xie K., Huang S., Dong Z., Juang S.-H., Wang Y., Fidler I.J. Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J Natl Cancer Inst 1997; 89: 421–7.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang X.M., Xu Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of inununocytes. Melanoma Res 2001; 11: 559–67.

    Article  PubMed  CAS  Google Scholar 

  69. Ziche M., Morbidelli L. Nitric oxide and angiogenesis J Neuro Oncology 2000; 50: 13948.

    Google Scholar 

  70. Ziche M., Morbidelli L., Choudhuri R., Zhang H.T., Donnini S., Granger H.J., Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 1997a; 99: 2625–34.

    Article  CAS  Google Scholar 

  71. Ziche M., Morbidelli L., Donnini S. Angiogenesis. Exp. Nephrology, 1996; 4:1–14.

    CAS  Google Scholar 

  72. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H.J., Maggi C.A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 1994; 94: 2036–44.

    Article  PubMed  CAS  Google Scholar 

  73. Ziche M., Morbidelli L., Parenti A., Amerini S., Granger H.J., Maggi C.A. Substance P increases cyclic GMP levels on coronary postcapillary venular endothelial cells. Life Sci 1993; 53: 1105–12.

    Article  Google Scholar 

  74. Ziehe M., Parenti A., Ledda F., Dell’Era P., Granger H.J., Maggi C.A., Presta M. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Cire Res 1997b; 80: 845–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morbidelli, L., Donnini, S., Ziche, M. (2004). Role of Nitric Oxide in Tumor Angiogenesis. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics