Skip to main content

Anatomy and Physiology of Motor Systems

  • Chapter
  • First Online:
Intraoperative Neurophysiological Monitoring

Abstract

The anatomy and the physiology of motor systems have been studied extensively in animal experiments. However, the animals used in the 1970s, when large studies of the function of the motor systems were performed, were mainly cats, the motor systems of which have considerable differences from that of humans. Even when monkeys were used later for studies of the motor system, it became evident that their motor systems were also different from that of humans. The limited possibilities of studying the neurophysiology of the human motor systems have framed our understanding of the human motor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Babinski sign: extension of the great toe and abduction of the other toes instead of the normal flexion reflex to plantar stimulation, considered indicative of corticospinal tract involvement (“positive” Babinski). (Stedman’s Electronic Medical Dictionary).

  2. 2.

    Joubert syndrome: agenesis of the cerebellar vermis, characterized clinically by attacks of tachypnea or prolonged apnea, abnormal eye movements, ataxia, and mental retardation. (Stedman’s Electronic Medical Dictionary).

  3. 3.

    Spasticity: One type of increase in muscle tone at rest, characterized by increased resistance to passive stretch, velocity dependent, and asymmetric about joints (i.e., greater in the flexor muscles at the elbow and the extensor muscles at the knee). Exaggerated deep tendon reflexes and clonus are additional manifestations. (Stedman’s Electronic Medical Dictionary).

  4. 4.

    Hemiazygos vein: formed by the merger of the left ascending lumbar vein with the left subcostal vein or a communication from the inferior vena cava, it pierces the left crus of the diaphragm, ascends along the left side of the bodies of the lower thoracic vertebrae, opposite the eighth vertebra, crosses the midline posterior to the aorta, thoracic duct, and esophagus and empties into the azygos vein, sometimes in common with the accessory hemiazygos vein.

  5. 5.

    The Jendrassik maneuver is used clinically to increase the excitability of lower extremity stretch reflexes. Practically, the patient is asked to hook the hands together by the flexed fingers and strongly pull against them while the monosynaptic stretch reflex is activated by tapping on the patella tendon or by stimulating a peripheral nerve to elicit the H-reflex.

References

  1. Penfield W and E Boldrey (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443.

    Article  Google Scholar 

  2. Kuypers HGJM (1981) Anatomy of the descending pathways, in Handbook of physiology-the nervous system, JM Brookhart and VB Mountcastle, Editors. American Physiological Society: Bethesda, MD. 597–666.

    Google Scholar 

  3. Brodal P (2004) The Central Nervous System Third Edition. 2004, New York: Oxford University Press.

    Google Scholar 

  4. Dum R and P Strick (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–89.

    CAS  PubMed  Google Scholar 

  5. Dum R and P Strick (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–82.

    Article  CAS  PubMed  Google Scholar 

  6. Lotze M, P Sauseng and M Staudt (2009) Functional relevance of ipsilateral motor ­activation in congenital hemiparesis as tested by fMRI-navigated TMS. Exp Neurol 217:440–3.

    Article  CAS  PubMed  Google Scholar 

  7. Penfield W and T Rasmussen (1950) The cerebral cortex of man: a clinical study of localization of function. New York: Macmillan.

    Google Scholar 

  8. Penfield W and K Welch (1951) The supplementary motor area of the cerebral cortex. Arch Neurol Psychiatry 66:289–316.

    CAS  Google Scholar 

  9. Woolsey CN, PH Settlage, DR Meyer et al (1951) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Pub Assoc Res Nerv Ment Dis 30:238–64.

    Google Scholar 

  10. Møller AR (2006) Neural plasticity and disorders of the nervous system. 2006, Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. Elbert T, C Pantev, C Wienbruch et al (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–7.

    Article  CAS  PubMed  Google Scholar 

  12. Meyerson BA, U Lindblom, B Linderoth et al (1993) Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta Neurochir Suppl 58:105–3.

    Google Scholar 

  13. Kandel ER, JH Schwartz and TM Jessell (2008) Principles of Neural Science. New York: Oxford University Press.

    Google Scholar 

  14. Kretchmann HJ and W Weinrich (1999) Neurofunctional Systems. Thieme: New York.

    Google Scholar 

  15. Shils JL, M Tagliati and RL Alterman, (2002) Neurophysiological monitoring during neurosurgery for movement disorders, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 405–48.

    Chapter  Google Scholar 

  16. Alexander GE, MD Crutcher and MR DeLong (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progr Brain Res 85:119–46.

    Article  CAS  Google Scholar 

  17. Yoshida M, A Rabin and A Anderson (1972) Monosynaptic inhibition of pallidal neurons by axon collaterals of caudatonigral fibers. Exp Brain Res 15:33–347.

    Article  Google Scholar 

  18. Albin RL, AB Young and JB Penney (1989) The functional anatomy of basal ganglia origin. Trends Neurosci 12:366–75.

    Article  CAS  PubMed  Google Scholar 

  19. Wiesendanger M, (1981) The pyramidal tract. its structure and function., in Handbook of behavioral neurobiology, AL Towe and ES Luschei, Editors. Plenum: New York. 401–90.

    Google Scholar 

  20. Alexander GE and MD Crutcher (1990) Functional architecture of basal ganglia circuits: neural substrate of parallel processing. Trends Neurosci 13:266–71.

    Article  CAS  PubMed  Google Scholar 

  21. Pennartz C, B JD, G AM et al (2009) Corticostriatal interactions during learning, memory processing, and decision making. J Neurosci 29:12831–8.

    Article  CAS  PubMed  Google Scholar 

  22. Strick P, R Dum and J Fiez (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–34.

    Article  CAS  PubMed  Google Scholar 

  23. Sacchetti B, B Scelfo and P Strata (2009) Cerebellum and emotional behavior. Neuroscience 162:756–62.

    Article  CAS  PubMed  Google Scholar 

  24. Schieber MH (2007) Comparative anatomy and physiology of the corticospinal system. Handb Clin Neurol 82:15–37.

    Article  PubMed  Google Scholar 

  25. Ralston DD and HJr Ralston (1985) The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242:325–37.

    Article  CAS  PubMed  Google Scholar 

  26. Spampinato M, J Kraas, B Maria et al ( 2008) Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A 146:1389–94.

    Google Scholar 

  27. MacDonald D, L Streletz, Z Al-Zayed et al (2004) Intraoperative neurophysiologic discovery of uncrossed sensory and motor pathways in a patient with horizontal gaze palsy and scoliosis. Clin Neurophysiol 115:576–82.

    Article  CAS  PubMed  Google Scholar 

  28. Porter R and R Lemon (1993) Cortical function and voluntary movement. Oxford: Clarendon Press.

    Google Scholar 

  29. White SR and RS Neuman (1980) Facilitation of spinal motoneuron by 5-hydroxytryptamine and noradrenaline. Brain Res 185:1–9.

    Article  Google Scholar 

  30. Davis M (1992) The role of the amygdala in fear and anxiety. Ann Rev Neurosci 15:353–75.

    Article  CAS  PubMed  Google Scholar 

  31. Andersen P, PJ Hagan, CG Phillips et al (1975) Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon’s hand. Proc R Soc London ser B 188:31–60.

    Article  CAS  Google Scholar 

  32. Humphrey DR and WS Corrie (1978) Properties of pyramidal tract neuron system within functionally defined subregion of primate motor cortex. J Neurophys 41:216–43.

    CAS  Google Scholar 

  33. Brodal P (1998) The central nervous system. New York: Oxford Press.

    Google Scholar 

  34. Burke D (1988) Spasticity as an adaptation to pyramidal tract injury, in Functional Recovery in Neurological Disease, SG Waxman, Editor. Raven Press: New York.

    Google Scholar 

  35. Pierrot-Deseilligny E (2002) Propriospinal transmission of part of the corticospinal excitation in humans. Muscle & Nerve 26:155–72.

    Article  Google Scholar 

  36. Nicolas G, V Marchand-Pauvert, D Burke et al (2001) Corticospinal excitation of presumed cervical propriospinal neurons and its reversal to inhibition in humans. J Physiol 533:903–19.

    Article  CAS  PubMed  Google Scholar 

  37. Murg M, H Binder and M Dimitrijevic (2000) Epidural electric stimulation of posterior structures of the human lumbar spinal cord: 1. Muscle twitches – a functional method to define the site of stimulation. Spinal Cord 38:394–402.

    Article  CAS  PubMed  Google Scholar 

  38. Minassian K, I Persy, F Rattay et al (2007) Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 26:275–95.

    Article  CAS  PubMed  Google Scholar 

  39. Frigon A and S Rossignol (2006) Functional plasticity following spinal cord lesions. Prog Brain Res 157:231–60.

    Article  PubMed  Google Scholar 

  40. Sindou M and P Mertens (2002) Selective spinal cord procedures for spasticity and pain, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 93–117.

    Chapter  Google Scholar 

  41. Sindou M and D Jeanmonod (1989) Microsurgical-DREZ-otomy for treatment of spasticity and pain in the lower limbs. Neurosurgery 24:655–70.

    Article  CAS  PubMed  Google Scholar 

  42. Benarroch EE, JR Daube, KD Flemming et al (2008) Mayo Clinic Medical Neurosciences, 5th edn, Mayo Foundation, Rochester, Minnesota.

    Google Scholar 

  43. Sliwa J and I Maclean (1992) Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil 73:365–72.

    Article  CAS  PubMed  Google Scholar 

  44. Krauss WE (1999) Vascular anatomy of the spinal cord. Neurosurg Clin N Am 10:9–15.

    CAS  PubMed  Google Scholar 

  45. Garland H, J Greenberg and D Harriman (1966) Infarction of the spinal cord. Brain 89:645–62.

    Article  CAS  PubMed  Google Scholar 

  46. Tator C and I Koyanagi (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–92.

    Article  CAS  PubMed  Google Scholar 

  47. Edgeley SA, JA Eyre, R Lemon et al (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol 425:301–20.

    Google Scholar 

  48. Amassian VE, GJ Quirk and M Stewart (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroenceph Clin Neurophys 77:390–401.

    Article  CAS  Google Scholar 

  49. Kitagawa H and AR Møller (1994) Conduction pathways and generators of magnetic evoked spinal cord potentials: a study in monkeys. Electroenceph Clin Neurophys 93:57–67.

    Article  CAS  Google Scholar 

  50. Deletis V (2002) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 25–51.

    Chapter  Google Scholar 

  51. Amassian VE, (2002) Animal and human motor system neurophysiology related to intraoperative monitoring, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 3–23.

    Chapter  Google Scholar 

  52. Kaneko K, S Kawai, Y Fuchigami et al (1966) The effect of current direction induced by transcranial magnetic stimulation on corticospinal excitability in human brain. Electroenceph Clin Neurophys 101:478–82.

    Article  Google Scholar 

  53. Maccabee PJ, VE Amassian, P Zimann et al, (1999) Emerging application in neuromagnetic stimualtion, in Comprehensive clinical neurophsysiology, K Levin and H Luders, Editors. W.B. Saunders: Philadelphia. 325–47.

    Google Scholar 

  54. Hicks R, D Burke, J Stephen et al (1992) Corticospinal volleys evoked by electrical stimulation of human motor cortex after withdrawal of volatile anaesthetics. J Physiol 456:293–404.

    Google Scholar 

  55. Sloan T (2002) Anesthesia and motor evoked potential monitoring, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Elsevier Science: Amsterdam. 451–74.

    Chapter  Google Scholar 

  56. Sloan TB and EJ Heyer (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–43.

    Article  PubMed  Google Scholar 

  57. Deletis V (1993) Intraoperative monitoring of the functional integrety of the motor pathways, in Advances in neurology: Electrical and magnetic stimulation of the brain, O Devinsky, A Beric and M Dogali, Editors. Raven Press: New York. 201–14.

    Google Scholar 

  58. Lazzaro Di V, A Oliviero, F Pilato et al (2003) Corticospinal volleys evoked by transcranial stimulation of the brain in concious humans. Neurol Res 25:143–50.

    Article  PubMed  Google Scholar 

  59. Barker AT, R Jalinous and IL Freeston (1985) Non-invasive magnetic stimulation of the human motor cortex. Lancet 1:1106–7.

    Article  CAS  PubMed  Google Scholar 

  60. Rösler KM (2001) Transcranial magnetic brain stimulation: a tool to investigate central motor pathways. News Physiol Sci 16:297–302.

    PubMed  Google Scholar 

  61. Jankowska E and A Lundberg (1981) Interneurons in the spinal cord. Trends Neurosci 4:230–3.

    Article  Google Scholar 

  62. Wolpaw JR and JA O’Keefe (1984) Adaptive plasticity in the primate spinal stretch reflex: evidence of a two-phase process. J Neuro Sci 4:2718–24.

    CAS  Google Scholar 

  63. Dancause N (2006) Vicarious function of remote cortex following stroke: recent evidence from human and animal studies. Neuroscientist 12:489–99.

    Article  PubMed  Google Scholar 

  64. Ackermans L, Y Temel and V Visser-Vandewalle (2008) Deep brain stimulation in Tourette’s Syndrome. Neurotherapeutics 5:339–44.

    Article  PubMed  Google Scholar 

  65. Jankovic J (1993) Tics in other neurological disorders, in Handbook of Tourette’s Syndrome and Related Tic and Behavioral Disorders, R Kurlan, Editor. Marcel Dekker: New York. 167–82.

    Google Scholar 

  66. Blandini F, C Tassorelli and JT Greenamyre, (1997) Movement disorders, in Principle of Neural Aging, SU Dani, A Hori and GF Walter, Editors. Elsevier: Amsterdam.

    Google Scholar 

  67. Bennett DA, LA Beckett, AM Murray et al (1996) Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 334:71–6.

    Article  CAS  PubMed  Google Scholar 

  68. Hirsch MA and BG Farley (2009) Exercise and neuroplasticity in persons living with Parkinson’s disease. Eur J Phys Rehabil Med 45:215–29.

    CAS  PubMed  Google Scholar 

  69. Gómez-Pinilla F, Z Ying, RR Roy et al (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–95.

    Article  PubMed  Google Scholar 

  70. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–85.

    Article  CAS  PubMed  Google Scholar 

  71. Temel Y and V Visser-Vandewalle (2004) Surgery in Tourette syndrome. Mov Disord 19:3–14.

    Article  PubMed  Google Scholar 

  72. Hua S, SG Reich, AT Zirh et al (1998) The role of the thalamus and basal ganglia in parkinsonian tremor. Mov Disord 13:40–2.

    Article  PubMed  Google Scholar 

  73. Hashimoto T (2000) Neuronal activity in the globus pallidus in primary dystonia and off-period dystonia. J Neurol 247 Suppl 5:V49–52.

    Article  PubMed  Google Scholar 

  74. Lefaucheur JP (2009) Treatment of Parkinson’s disease by cortical stimulation. Expert Rev Neurother 9:1755–71.

    Article  PubMed  Google Scholar 

  75. Arle J, D Apetauerova, J Zani et al (2008) Motor cortex stimulation in patients with Parkinson disease: 12-month follow-up in 4 patients. J Neurosurg 109:133–9.

    Article  PubMed  Google Scholar 

  76. Cioni B, M Meglio, V Perotti et al (2007) Neurophysiological aspects of chronic motor cortex stimulation. Neurophysiol Clin 37(6):441–7.

    Article  CAS  PubMed  Google Scholar 

  77. Fuentes R, P Petersson, W Siesser et al (2009) Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 323:1578–82.

    Article  CAS  PubMed  Google Scholar 

  78. Schuenke M, E Schulte and U Schumacher (2007) Thieme atlas of anatomy. head and neuroanatomy, in LM Ross, ED Lamperti and E Taub Editors. Stuttgart, New York: Thieme.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aage R. Møller PhD (DMedSci) .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Møller, A.R. (2011). Anatomy and Physiology of Motor Systems. In: Intraoperative Neurophysiological Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7436-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7436-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7435-8

  • Online ISBN: 978-1-4419-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics