Skip to main content

Biomaterials for Clinical Applications

  • Book
  • © 2010

Overview

  • Bridges the gap between the laboratory and the clinic by identifying needs for biomedical materials in the context of the most prevalent diseases worldwide
  • While other books in the field take a technology-centered approach to biomaterials, this book takes a disease-centered approach
  • Written by an expert with experience in both the private sector and academia
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

Biomaterials for Clinical Applications is organized according to the World Health Organization’s report of the top 11 causes of death worldwide, and lays out opportunities for both biomaterials scientists and physicians to tackle each of these leading contributors to mortality. The introductory chapter discusses the global burden of disease. Each of the subsequent eleven chapters focuses on a specific disease process, beginning with the leading cause of death worldwide, cardiovascular disease. The chapters start with describing diseases where clinical needs are most pressing, and then envisions how biomaterials can be designed to address these needs, instead of the more technologically centered approached favored by most books in the field. This book, then, should appeal to chemical engineers and bioengineers who are designing new biomaterials for drug delivery and vaccine delivery, as well as tissue engineering.

Authors and Affiliations

  • Central Research & Development, DuPont Company, Wilmington, USA

    Sujata K. Bhatia

About the author

Sujata K. Bhatia is a physician-scientist at DuPont Applied BioSciences, and an affiliated faculty member in the Department of Chemical Engineering at the University of Delaware. She earned three bachelor's degrees, in biology, biochemistry, and chemical engineering, and a master's degree in chemical engineering at the University of Delaware. She then attended the University of Pennsylvania School of Medicine, where she earned her MD and PhD in bioengineering. She currently contributes to medical biomaterials projects, as well as health and nutrition programs at DuPont. She teaches biochemical engineering and biomedical engineering courses at the University of Delaware.

Bibliographic Information

Publish with us