Skip to main content

Coronary Artery Disease

  • Chapter
  • First Online:
Biomaterials for Clinical Applications

Abstract

Coronary artery disease, also known as ischemic heart disease , is the leading killer of men and women worldwide. In 2004, coronary artery disease was responsible for 7.2 million deaths, or 12.2% of all deaths globally and 5.8% of all years of life lost (World Health Organization 2008). The disease is highly prevalent: at any given time, 54 million people in the world suffer from angina pectoris (the characteristic chest pain of ischemic heart disease), and 23.2 million people experience moderate to severe disability as a result of ischemic heart disease 2008). Thirty-day mortality after an acute heart attack is extremely high at 33%; even in a hospital with a coronary care unit where advanced care options are available, mortality is still 7%. Approximately 4% of patients who survive initial hospitalization die in the first year following a heart attack (Antman et al. 2004). Congestive heart failure , the end stage of many heart diseases, carries a 1-year mortality rate as high as 40% and a 5-year mortality between 26 and 75%; the prognosis for patients with congestive heart failure is worse than for those with most malignancies or AIDS (McMurray and Stewart 2000). Pharmacologic therapy, metallic stents, and coronary artery bypass grafts have been mainstays of treatment for ischemic heart disease. However, new biomaterial devices are on the horizon that will enable optimal treatment of coronary artery lesions, as well as regeneration of damaged cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya G, Park K (2006) Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev 58:387

    Article  CAS  Google Scholar 

  • Antman EM, Anbe DT, Armstrong PW et al (2004) ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 110:588

    Article  Google Scholar 

  • Aoki J, Serruys PW, van Beusekom H et al (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34 : the HEALING-FIM (Healthy endothelial accelerated lining inhibits neointimal growth-first in man) Registry. J Am Coll Cardiol 45:1574

    Article  CAS  Google Scholar 

  • Ashley EA, Niebauer J (2004) Cardiology explained. Remedica, London

    Google Scholar 

  • Ashrafian H, Dwivedi G, Senior R (2006) Assessing myocardial perfusion after myocardial infarction . PLoS Med 3:e131

    Article  Google Scholar 

  • Axel DI, Kunert W, Göggelmann C (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96:636

    Article  CAS  Google Scholar 

  • Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction . J Am Coll Cardiol 48:907

    Article  CAS  Google Scholar 

  • Christman KL, Vardanian AJ, Fang Q et al (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654

    Article  CAS  Google Scholar 

  • Cutler DM, McClellan M (2001) Is technological change in medicine worth it? Health Affairs 20:11

    Google Scholar 

  • Davis ME, Motion JP, Narmoneva DA et al (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442

    Article  CAS  Google Scholar 

  • Eberhart RC, Su SH, Nguyen KT et al (2003) Bioresorbable polymeric stents: current status and future promise. J Biomater Sci Polym Ed 14:299

    Article  CAS  Google Scholar 

  • Fattori R, Piva T (2003) Drug eluting stents in vascular interventions. Lancet 361:247

    Article  Google Scholar 

  • Finn AV, Joner M, Nakazawa G et al (2007) Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization . Circulation 115:2435

    Article  Google Scholar 

  • Gaziano T, Reddy KS, Paccaud F (2006) Cardiovascular disease. In: Jamison DT, Breman JG, Measham AR et al (eds) Disease control priorities in developing countries, 2nd edn. IBRD/The World Bank and Oxford University Press, Washington, DC

    Google Scholar 

  • Groeneveld PW, Matta MA, Greenhut AP et al (2008) Drug-eluting compared with bare-metal coronary stents among elderly patients. J Am Coll Cardiol 51:2017

    Article  CAS  Google Scholar 

  • Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 59:2015

    Article  Google Scholar 

  • Jawad H, Ali NN, Lyon AR et al (2007) Myocardial tissue engineering: a review. J Tissue Eng Regen Med 1:327

    Article  CAS  Google Scholar 

  • Jay V (2000) The legacy of William Heberden. Arch Pathol Lab Med 124:1750

    CAS  Google Scholar 

  • Kawamoto A, Asahara T (2007) Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv 70:477

    Article  Google Scholar 

  • Kellar RS, Shepherd BR, Larson DF et al (2005) Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng 11:1678

    Article  CAS  Google Scholar 

  • Kim W, Jeong MH, Kim KH et al (2006) The clinical results of a platelet glycoprotein IIb/IIIa receptor blocker (abciximab : ReoPro)-coated stent in acute myocardial infarction . J Am Coll Cardiol 47:933

    Article  CAS  Google Scholar 

  • Kipshidze N, Moussa I, Nikolaychik V et al (2002) Influence of Class I interferons on performance of vascular cells on stent material in vitro. Cardiovasc Radiat Med 3:82

    Article  Google Scholar 

  • Kohn J, Zeltinger J (2005) Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease . Expert Rev Med Devices 2:667

    Article  CAS  Google Scholar 

  • Lafont A, Li S, Garreau H et al (2006) PLA stereocopolymers as sources of bioresorbable stents: preliminary investigation in rabbit. J Biomed Mater Res B Appl Biomater 77:349

    Google Scholar 

  • Lemos PA (2007) Polymeric stents: degradable but strong. Catheter Cardiovasc Interv 70:524

    Article  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD et al (1999) Survival and function of bioengineered cardiac grafts. Circulation 100(suppl 19): II63

    CAS  Google Scholar 

  • Maluenda G, Lemesle G, Waksman R (2009) A critical appraisal of the safety and efficacy of drug-eluting stents. Clin Pharmacol Ther 85:474

    Article  CAS  Google Scholar 

  • McGuigan AP, Bruzewicz DA, Glavan A et al (2009) Cell encapsulation in sub-mm sized gel modules using replica molding. PLoS One 3:e2258

    Article  Google Scholar 

  • McMurray JJ, Stewart S (2000) Heart failure: epidemiology, aetiology, and prognosis of heart failure . Heart 83:596

    Article  CAS  Google Scholar 

  • Mercado N, Boersma E, Wijns W et al (2001) Clinical and quantitative coronary angiographic predictors of coronary restenosis : a comparative analysis from the balloon-to-stent era. J Am Coll Cardiol 38:645

    Article  CAS  Google Scholar 

  • Miyahara Y, Nagoya N, Kataoka M et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction . Nat Med 12:459

    Article  CAS  Google Scholar 

  • Ormiston JA, Serruys PW, Regar E et al (2008) A bioabsorbable everolimus -eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371:899

    Article  CAS  Google Scholar 

  • Radisic M, Park H, Gerecht S et al (2007) Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci 362:1357

    Article  CAS  Google Scholar 

  • Schatz RA, Baim DS, Leon M et al (1991) Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 83:148

    Article  CAS  Google Scholar 

  • Sharkawi T, Cornhill F, Lafont A et al (2007) Intravascular bioresorbable polymer stents: a potential alternative to current drug eluting metal stents. J Pharm Sci 96:2829

    Article  CAS  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimentional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90: e40

    Article  CAS  Google Scholar 

  • Stefanadis C, Toutouzas K, Stefanadi E et al (2007) Inhibition of plaque neovascularization and intimal hyperplasia by specific targeting vascular endothelial growth factor with bevacizumab -eluting stent: an experimental study. Atherosclerosis 195:268

    Article  Google Scholar 

  • Tamai H, Igaki K, Kyo E et al (2000) Initial and 6-month results of biodegradable poly-L-lactic acid coronary stents in humans. Circulation 102:399

    Article  CAS  Google Scholar 

  • Tanimotos S, Serruys PW, Thuesen L et al (2007) Comparison of in vivo acute stent recoil between the bioabsorbable everolimus -eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv 70:515

    Article  Google Scholar 

  • Virchow R (1856) Gesammalte abhandlungen zur wissenschaftlichen medtzin. Medinger Sohn & Co., Frankfurt

    Google Scholar 

  • Weisz G, Leon MB, Holmes DR Jr (2006) Two-year outcomes after sirolimus -eluting stent implantation: results from the sirolimus-eluting stent in de Novo native coronary lesions (SIRIUS) trial. J Am Coll Cardiol 47:1350

    Article  CAS  Google Scholar 

  • White PD (1942) Book review: a short history of cardiology by Herrick JB. JAMA 202–203

    Google Scholar 

  • World Health Organization (2008) The global burden of disease : 2004 update. WHO Press, Geneva

    Google Scholar 

  • Zhang P, Zhang H, Wang H et al (2006) Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 30:86

    Article  CAS  Google Scholar 

  • Zimmer S, Jacobs B, Levy T et al (2002) Med Tech 101: the medical device handbook. Deutsche Bank Securities, Inc., New York, NY

    Google Scholar 

  • Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata K. Bhatia .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhatia, S.K. (2010). Coronary Artery Disease. In: Biomaterials for Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6920-0_2

Download citation

Publish with us

Policies and ethics