Skip to main content

Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell

  • Chapter
  • First Online:
Design and Analysis of Biomolecular Circuits

Abstract

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ander M, Beltrao P, Di Ventura B et al (2004) SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. Syst Biol 1:129–138

    Article  Google Scholar 

  2. Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–1825

    Article  Google Scholar 

  3. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1:137–151

    Article  Google Scholar 

  4. Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705

    Google Scholar 

  5. Arjunan SNV, Tomita M (2009) Modeling reaction-diffusion of molecules on surface and in volume spaces with the E-cell system. IJCSIS 3:10060913

    Google Scholar 

  6. Arjunan SNV, Tomita M (2010) A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst Synth Biol 4:35–53

    Article  Google Scholar 

  7. Baras F, Mansour MM (1996) Reaction-diffusion master equation: a comparison with microscopic simulations. Phys Rev E 54(6):6139–6148

    Article  Google Scholar 

  8. Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS Comput Biol 2(9):e117

    Article  Google Scholar 

  9. Boulianne L, Al Assaad S, Dumontier M, Gross WJ (2008) GridCell: a stochastic particle-based biological system simulator. BMC Syst Biol 2:66

    Article  Google Scholar 

  10. Burrage K, Tian T, Burrage PM (2004) A multi-scaled approach for simulating chemical reaction systems. Prog Biophys Mol Biol 85:217–234

    Article  Google Scholar 

  11. Burrage PM, Burrage K (2002) A variable stepsize implementation for stochastic differential equations. SIAM J Sci Comput 24(3):848–864

    Article  MathSciNet  MATH  Google Scholar 

  12. Burrage PM, Burrage K, Kurowski K, Lorenc M, Nicolau DV, Swain M, Ragan M (2009) A parallel plasma membrane simulation, In: Guerrero J (ed) Proceedings of 1st international workshop on high performance computational systems biology (HiBi2009), Conference Publishing Services, IEEE Computer Society, Trento, Italy, 14–16 October 2009, pp 105–112, ISBN: 978-0-7695-3809-9

    Google Scholar 

  13. Burrage PM, Herdiana R, Burrage K (2004) Adaptive stepsize based on control theory for SDEs. J Comput Appl Math 170:317–336

    Article  MathSciNet  MATH  Google Scholar 

  14. Chopard B, Frachebourg L, Droz M (1994) Multiparticle lattice gas automata for reaction diffusion systems. Int J Mod Phys C 5:47–63

    Article  Google Scholar 

  15. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  16. Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Colloid Sci 4:425–437

    Article  Google Scholar 

  17. Crampin E, Smith N, Hunter P (2004) Multi-scale modelling and the IUPS Physiome Project. J Mol Histol 35(7):707–714

    Article  Google Scholar 

  18. Dobrzyński M, Rodríguez JV, Kaandorp JA, Blom JG (2007) Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23:1969–1977

    Article  Google Scholar 

  19. Drawert B, Lawson MJ, Petzold L, Khammash M (2010) The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. J Chem Phys 132:074101. doi:10.1063/1.3310809

    Article  Google Scholar 

  20. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  Google Scholar 

  21. Elf J, Doncic A, Ehrenberg M (2003) Mesoscopic reaction-diffusion in intracellular signaling. In: Bezrukov SM, Frauenfelder H, Moss F (eds) Fluctuations and noise in biological, biophysical, and biomedical systems, Proceedings of the SPIE 5110, pp 114–125

    Google Scholar 

  22. Elf J, Ehrenberg M (2004) Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst Biol 1:230–236

    Article  Google Scholar 

  23. Engblom S (2009) Galerkin spectral method applied to the chemical master equation. Commun Comput Phys v5(i5):871–896

    Google Scholar 

  24. Engblom S, Ferm L, Hellander A, Loetstedt P (2009) Simulation of stochastic reaction-diffusion processes on unstructured meshes. SIAM J Sci Comput 31:1774–1797

    Article  MathSciNet  MATH  Google Scholar 

  25. Erban R, Chapman SJ, Maini PK (2007) A practical guide to stochastic simulations of reaction–diffusion processes. arXiv:0704.1908

    Google Scholar 

  26. Erban R, Chapman SJ (2009) Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Phys Biol 6:046001

    Article  Google Scholar 

  27. Fange D, Elf J (2006) Noise-induced Min phenotypes in E. coli. PLoS Comput Biol 2:e80

    Google Scholar 

  28. Gibson MA, Bruck J (2000) Efficient exact atochastic simulation of chemical systems with many species and many channels. J Phys Chem 104(9):1876–1889

    Google Scholar 

  29. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  30. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733

    Article  Google Scholar 

  31. Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438

    Article  Google Scholar 

  32. Hattne J, Fange D, Elf J (2005) Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21:2923–2924

    Article  Google Scholar 

  33. Hedley W, Nelson MR, Bullivant DP, Nielsen PF (2001) A short introduction to CellML. Philos Trans R Soc Lond A 359:1073–1089

    Article  MATH  Google Scholar 

  34. Isaacson SA (2009) The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J Appl Math 70:77–111

    Article  MathSciNet  MATH  Google Scholar 

  35. Jahnke T, Galan S (2008) Solving chemical master equations by an adaptive wavelet method. In: Simos TE, Psihoyios G, Tsitouras C (eds) Numerical analysis and applied mathematics: international conference on numerical analysis and applied mathematics 2008, vol. 1048 of AIP Conference Proceedings, Psalidi, Kos, Greece, 16–20 September 2008, pp. 290–293

    Google Scholar 

  36. Kerr RA, Bartol TM, Kaminski B et al (2008) Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30:3126

    Article  MathSciNet  MATH  Google Scholar 

  37. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer-Verlag, Berlin

    MATH  Google Scholar 

  38. Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J Chem Phys 57(7):2976–2978

    Article  Google Scholar 

  39. Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230

    Article  Google Scholar 

  40. Lampoudi S, Gillespie DT, Petzold L (2009) The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. J Chem Phys 130:094104

    Article  Google Scholar 

  41. Leier A, Marquez-Lago TT (2011) Correction factors for boundary diffusion and bimolecular reactions in reaction-diffusion master equations. To be submitted

    Google Scholar 

  42. Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19(10):401–406

    Article  Google Scholar 

  43. MacNamara S, Bersani AM, Burrage K, Sidje RB (2008) Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J Chem Phys 129(9):095105

    Article  Google Scholar 

  44. MacNamara S, Burrage K, Sidje RB (2008) Multiscale modeling of chemical kinetics via the master equation. SIAM J Multiscale Model Simul 6(4):1146–1168

    Article  MathSciNet  MATH  Google Scholar 

  45. Marquez-Lago TT, Burrage K (2007) Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. J Chem Phys 127:104101

    Article  Google Scholar 

  46. Marquez-Lago TT, Leier A, Burrage K (2010) Probability distributed time delays: integrating spatial effects into temporal models. BMC Syst Biol 4:19

    Article  Google Scholar 

  47. Marsh BJ (2006) Toward a ‘visible cell’ … and beyond. Aust Biochemist 37:5–10

    Google Scholar 

  48. Mélykúti B, Burrage K, Zygalakis KC (2010) Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation. J Chem Phys 132:1

    Google Scholar 

  49. Morton-Firth CJ, Bray D (1998) Predicting temporal fluctuations in an intracellular signalling pathway. J Theor Biol 192:117–128

    Article  Google Scholar 

  50. Murase K, Fujiwara T, Umemura TY (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093

    Article  Google Scholar 

  51. Nicolau Jr, DV, Burrage K, Parton RG et al (2006) Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol Cell Biol 26(1):313–323

    Article  Google Scholar 

  52. Nicolau Jr, DV, Hancock JF, Burrage K (2007) Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987

    Article  Google Scholar 

  53. Nicolau Jr, DV, Burrage K (2008) Stochastic simulation of chemical reactions in spatially complex media. Comput Math Appl 55(5):1007–1018

    Article  MathSciNet  MATH  Google Scholar 

  54. Oppelstrup T, Bulatov VV, Donev A et al (2006) First-passage kinetic Monte Carlo method. Phys Rev Lett 97:230602

    Article  Google Scholar 

  55. Peleš S, Munsky B, Khammash M (2006) Reduction and solution of the chemical master equation using time scale separation and finite state projection. J Chem Phys 125:204104–1–13

    Google Scholar 

  56. Plimpton SJ, Slepoy A (2003) ChemCell: a particle-based model of protein chemistry and diffusion in microbial cells. Sandia National Laboratory Technical Report 2003, Albuquerque, NM

    Google Scholar 

  57. Plimpton SJ, Slepoy A (2005) Microbial cell modeling via reacting diffusing particles. J Physiol 16:305

    Google Scholar 

  58. Prior IA, Muncke C, Parton RG et al (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  Google Scholar 

  59. Ridgway D, Broderick G, Lopez-Campistrous A et al (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94:3748–3759

    Article  Google Scholar 

  60. Rodríguez JV, Kaandorp JA, Dobrzyński M, Blom JG (2006) Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli. Bioinformatics 22:1895–1901

    Article  Google Scholar 

  61. Sanford C, Yip MLK, White C, Parkinson J (2006) \(\mathrm{Cell} + +\)–simulating biochemical pathways. Bioinformatics 22:2918–2925

    Article  Google Scholar 

  62. Séguis J-C, Burrage K, Erban R, Kay D (2010) Efficient numerical model for lipid rafts and protein interactions on a cell membrane, in preparation

    Google Scholar 

  63. Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  Google Scholar 

  64. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  Google Scholar 

  65. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  Google Scholar 

  66. Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. CRC Press, Boca Raton, FL

    Google Scholar 

  67. Stundzia AB, Lumsden CJ (1996) Stochastic simulation of coupled reaction-diffusion processes. J Comp Physiol 127:196–207

    MATH  Google Scholar 

  68. Takahashi K, Ishikawa N, Sadamoto Y et al (2003) E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics 19:1727–1729

    Article  Google Scholar 

  69. Takahashi K, Kaizu K, Hu B, Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20:538–546

    Article  Google Scholar 

  70. Takahashi K, Arjunan SNV, Tomita M (2005) Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico. FEBS Lett 579:1783–1788

    Article  Google Scholar 

  71. Takahashi K, Tănase-Nicola S, ten Wolde PR (2010) Spatio-temporal correlations can drastically change the response of a MAPK pathway. PNAS 107(6):2473–2478

    Article  Google Scholar 

  72. Tian T, Burrage K (2004) Binomial leap methods for simulating stochastic chemical kinetics. J Chem Phys 121:10356–10364

    Article  Google Scholar 

  73. Tian T, Harding A, Westbury E, Hancock J (2007) Plasma membrane nano-switches generate robust high-fidelity Ras signal transduction. Nat Cell Biol 9:905–914

    Article  Google Scholar 

  74. Tomita M, Hashimoto K, Takahashi K et al (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Article  Google Scholar 

  75. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28:165–178

    Article  MATH  Google Scholar 

  76. van Zon JS, ten Wolde PR (2005) Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. J Chem Phys 123: 1–16

    Google Scholar 

  77. van Zon JS, ten Wolde PR (2005) Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Phys Rev Lett 94:128103

    Article  Google Scholar 

  78. Wils S, De Schutter E (2009) STEPS: modeling and simulating complex reaction-diffusion systems with Python. Front Neuroinform 3:15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Burrage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burrage, K., Burrage, P.M., Leier, A., Marquez-Lago, T., Nicolau, D.V. (2011). Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds) Design and Analysis of Biomolecular Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6766-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6766-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6765-7

  • Online ISBN: 978-1-4419-6766-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics