Skip to main content

The Gene Pool of Sorghum bicolor and Its Improvement

  • Chapter
  • First Online:
Genomics of the Saccharinae

Abstract

Sorghum, a genus having evolved across a wide range of environments in Africa, exhibits a great range of phenotypic diversity and numerous resistances to abiotic and biotic stresses. Sorghum is recognized as a highly productive, drought tolerant, C4 cereal that provides humankind with food, feed, fuel, fiber, and energy, particularly in the semiarid tropics of the world.

Sorghum has been collected and conserved over the past 50 years and numerous international and national collections exist. The major collections have in excess of 40,000 accessions and much of the native diversity of cultivated sorghum is represented. However, much of the diversity of the wild races of sorghum is underrepresented in these same collections. Over the past decade, the major collections have benefited by efforts to better characterize these accessions but these efforts have not significantly increased use of the materials. Therefore, despite a significant number of collections and holdings, much of the diversity of sorghum remains untapped.

Over the past decade, tremendous progress has been made to build the molecular and genomic foundation required to increase our understanding of sorghum diversity in the genome and gene pool and, ultimately, to link this information to crop improvement. Sorghum represents the first crop genome of African origin to be sequenced (Paterson et al. Nature 457:551–556, 2009) and, through coordinated national and international efforts, high-density genetic and physical maps, extensive sets of RFLP and SSR markers, association (Casa et al. Crop Sci 48:30–40, 2008) and diversity panels (Deu et al.Genome 49:168–180, 2006), nested association mapping populations, and other resources are readily available for use for scientific investigations and breeding efforts. The generation and use of these genomic resources have added to our insights about sorghum domestication and diversity. Future studies will enrich our understanding and provide increasing resolution to quantify and use both wild and domesticated sources of diversity in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benor S, Sisay L (2003) Folk domestication of sorghum (Sorghum bicolour (L) Moench) land races and its ethnobotanical implications: a case study in northeastern Ethiopia. Ethnobiologia 3:2941

    Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula, vol 1, 2nd edn. A.H. Government of Malaysia and Singapore, Kuala Lumpur, Malaysia

    Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats (SSRs). Theor Appl Genet 111:23–30

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Mitchell SE, Jensen JD, Hamblin MT, Paterson AH, Aquadro CF, Kresovich S (2006) Evidence for a selective sweep on Chromosome 1 of cultivated sorghum. Crop Sci 46:S27–S40

    Article  Google Scholar 

  • Casa AM, Pressoir G, Brown P, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Dahlberg JA (2000) Classification and characterization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 99–130

    Google Scholar 

  • Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58:556–567

    Article  Google Scholar 

  • Dahlberg JA, Madera-Torres P (1997) Restorer reaction in A1 (ATx623), A2 (A2Tx632), and A3 (A3SC103) cytoplasms to selected accessions from the Sudan sorghum collection. ISMN 38:43–58

    Google Scholar 

  • Dahlberg JA, Spinks M (1995) Current status of the U. S. sorghum germplasm collection. Sorghum Newsl 36:4–11

    Google Scholar 

  • Dahlberg JA, Wasylikowa K (1996) Image and statistical analyses of early sorghum remains (8000 B. P.) from the Nabta Playa archaeological site in the Western Desert, southern Egypt. Veg Hist Archaeobot 5:293–299

    Article  Google Scholar 

  • De Alencar Figueirdeo LF, Calatayud C, Dupuits C, Billot C, Rami JF, Brunel D, Perrier X, Courtois B, Deu M, Glaszmann JC (2008) Phylogeographic evidence of crop neodiversity in Sorghum. Genetics 179:997–1008

    Article  Google Scholar 

  • Deu M, Rattunde F, Chantereu JA (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180

    PubMed  CAS  Google Scholar 

  • de Wet JMJ (1977) Domestication of African cereals. Afr Econ Hist 3:15–32

    Article  Google Scholar 

  • de Wet JMJ (1978) Systematics and evolution of sorghum sect. Sorghum (gramineae). Am J Bot 65:477–484

    Article  Google Scholar 

  • de Wet JMJ, Harlan JR (1971) The origin and domestication of Sorghum bicolor. Econ Bot 25:128–135

    Article  Google Scholar 

  • de Wet JMJ, Huckabay JP (1967) The origin of sorghum bicolor. II. Distribution and domestication. Evolution 21:787–802

    Article  Google Scholar 

  • de Wet JMJ, Price EG (1976) Plant domestication and indigenous African agriculture. In: Harlan JR, De Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton, The Hague, pp 453–464

    Google Scholar 

  • de Wet JMJ, Rao KEP (1986) Wild sorghums and their significance in crop improvement. In: Proceedings of sorghum conference, 20–23 August 1986, Shenyang, China. Cited in J. Dahlberg (2000)

    Google Scholar 

  • Doggett H (1965) Disruptive section in crop development. Nature 4981:279–280

    Article  Google Scholar 

  • Doggett H (1970) Sorghum (Tropical Agriculture Series). Longmans, London

    Google Scholar 

  • Doggett H (1988) Sorghum. Wiley, New York

    Google Scholar 

  • Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrid development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in cultivar development: part 1. CSSA Spec. Publ. No. 17. CSSA, Madison, WI, pp 69-102

    Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) A SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Grenier C, Bramel PJ, Dahlberg JA, El-Ahmadi A, Mahmoud M, Peterson GC, Rosenow DT, Ejeta G (2004) Sorghums of the Sudan: analysis of regional diversity and distribution. Genet Resour Crop Evolut 51:489–500

    Article  CAS  Google Scholar 

  • Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, Aquadro CF, Kresovich S (2006) Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 173:953–964

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium, and selection in a diverse sample of Sorghum bicolor. Genetics 167:471–483

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Harlan JR (1992) Indigenous African agriculture. In: Cowan CW, Watson PJ (eds) The origins of agriculture: an international perspective. Smithsonian Institution Press, Washington, DC, pp 59–70

    Google Scholar 

  • Harlan JR (1995) The living fields: our agricultural heritage. Cambridge University Press, Cambridge

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–351

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ, Stemler ABL (eds) (1976) Origins of African plant domestication. Mouton, The Hague

    Google Scholar 

  • Harlan JR, Stemler A (1976) The races of Sorghum in Africa. In: Harlan JR, de Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton, The Hague, pp 465–478

    Chapter  Google Scholar 

  • Hawkes J (1973) The First Great Civilizations. Penguin Books, Hammondsworth, Middlesex

    Google Scholar 

  • House LR (1980) A guide to sorghum breeding. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Kimber C (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederickson RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 3–98

    Google Scholar 

  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas Agric. Exp. Stn. Bull. 1454

    Google Scholar 

  • Miller FR (1982) Genetic and environmental response characteristics of sorghum. International Crops Research Institute for the Semi-Arid Tropics Symposium on Sorghum, 2–7 November 1981, Patancheru, India, pp 393–446

    Google Scholar 

  • Murdock G (1959) Africa: its peoples and their culture history. McGraw Hill, New York

    Google Scholar 

  • Murty BR, Govil GN (1967) Description of 70 groups in genus Sorghum based on a modified Snowden’s classification. Indian J Genet Plant Breed 27:75–90

    Google Scholar 

  • Qingshan L, Dahlberg JA (2001) Chinese sorghum genetic resources. Econ Bot 55:401–425

    Article  Google Scholar 

  • Quinby JR (1974) Sorghum improvement and the genetics of growth. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Paterson A, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellston U, Mitros T, Poliakov A, Schmutz J, Spannag M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, ur-Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Rosenow DT, Dahlberg JA (2000) Collection, conversion, and utilization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 309–328

    Google Scholar 

  • Schecter Y, de Wet JMJ (1975) Comparative electrophoresis and isozyme analysis of seed proteins from cultivated races of sorghum. Am J Bot 62:254–261

    Article  Google Scholar 

  • Snowden JD (1936) The cultivated races of sorghum. Adlard & Sons, Ltd., London

    Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1975) Evolutionary history of cultivated sorghums (Sorghum bicolor [Linn.] Moench) of Ethiopia. Bull Torrey Bot Club 102:325–333

    Article  Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1977) The sorghums of Ethiopia. Econ Bot 31:446–450

    Article  Google Scholar 

  • Stephens JC, Miller FR, Rosenow DT (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Article  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Vishnu-Mittre A (1974) The beginning of agriculture, paleobotanical evidence in India. In: Hutchinson JB (ed) Evolutionary studies in world crops: diversity and change in the Indian subcontinent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Yang W, de Oliveira AC, Godwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese Sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Elizabeth Herron in the Office of Research Development at the University of South Carolina for her assistance with editing and fact-checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa T. Kimber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kimber, C.T., Dahlberg, J.A., Kresovich, S. (2013). The Gene Pool of Sorghum bicolor and Its Improvement. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_2

Download citation

Publish with us

Policies and ethics