Skip to main content

Principles of Radiofrequency Ablation

  • Chapter
  • First Online:
Interventional Oncology

Abstract

Image-guided tumor ablation is a minimally invasive strategy to treat focal tumors in the liver, lung, kidney, bone, and adrenal glands by inducing irreversible cellular injury through the application of thermal, and more recently, nonthermal energy, or chemical injection. Given the multiplicity of treatment types and potential complexity of paradigms in oncology, and the wider application of thermal ablation techniques, a thorough understanding of the basic principles and recent advances in thermal ablation is a necessary prerequisite for their effective clinical use. This chapter will review several of these key concepts related to tumor ablation including those that relate to performing a clinical ablation, such as understanding the goals of therapy and mechanisms of tissue heating or tumor destruction, and understanding the proper role of tumor ablation and the strategies that are being pursued to improve overall ablation outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology. 2003;226:417–24.

    Article  PubMed  Google Scholar 

  2. Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol. 2010;21:S242–50.

    Article  PubMed  Google Scholar 

  3. Livraghi T, Meloni F, Goldberg SN, Lazzaroni S, Solbiati L, Gazelle GS. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology. 2000;214:761–8.

    PubMed  CAS  Google Scholar 

  4. Solbiati L, Livraghi T, Goldberg SN, Ierace T, DellaNoce M, Gazelle GS. Percutaneous radiofrequency ablation of hepatic metastases from colorectal cancer: long term results in 117 patients. Radiology. 2001;221:159–66.

    Article  PubMed  CAS  Google Scholar 

  5. Venkatesan AM, Locklin J, Dupuy DE, Wood BJ. Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol. 2010;13:89–99.

    Article  PubMed  Google Scholar 

  6. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211:68–72.

    Article  PubMed  Google Scholar 

  7. Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.

    Article  PubMed  Google Scholar 

  8. McWilliams JP, Yamamoto S, Raman SS, et al. Percutaneous ablation of hepatocellular carcinoma: current status. J Vasc Interv Radiol. 2010;21:S204–13.

    Article  PubMed  Google Scholar 

  9. Dodd 3rd GD, Soulen MC, Kane RA, et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics. 2000;20:9–27.

    PubMed  Google Scholar 

  10. Shimada K, Sakamoto Y, Esaki M, Kosuge T. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am J Surg. 2008;195:775–81.

    Article  PubMed  Google Scholar 

  11. Dodd 3rd GD, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177:777–82.

    PubMed  Google Scholar 

  12. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185:64–71.

    PubMed  Google Scholar 

  13. Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234:961–7.

    Article  PubMed  Google Scholar 

  14. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.

    Article  PubMed  Google Scholar 

  15. Schramm W, Yang D, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5013–6.

    Article  PubMed  CAS  Google Scholar 

  16. Ahmed M, Liu Z, Humphries S, Goldberg SN. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Int J Hyperthermia. 2008;24:577–88.

    Article  PubMed  Google Scholar 

  17. Dupuy DE, Goldberg SN, Gazelle GS, Rosenthal DI. Cooled-tip radiofrequency ablation in the vertebral body: temperature distribution in the spinal canal. Radiology. 1997;207(P):330.

    Google Scholar 

  18. Seegenschmiedt M, Brady L, Sauer R. Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol. 1990;13:352–63.

    Article  PubMed  CAS  Google Scholar 

  19. Trembley B, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. In: Urano E, Douple E, editors. Hyperthermia and oncology, Vol. 3. Utrecht, The Netherlands: VSP; 1992: p. 11–98.

    Google Scholar 

  20. Larson T, Bostwick D, Corcia A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissues in patients with benign prostatic hyperplasia. Urology. 1996;47:463–9.

    Article  PubMed  CAS  Google Scholar 

  21. Zevas N, Kuwayama A. Pathologic analysis of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg. 1972;37:418–22.

    Article  Google Scholar 

  22. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88:2452–63.

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3:212–8.

    Article  PubMed  CAS  Google Scholar 

  24. Mertyna P, Dewhirst MW, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia. 2008;24:550–9.

    Article  PubMed  Google Scholar 

  25. Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol. 2007;18:647–54.

    Article  PubMed  Google Scholar 

  26. Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.

    PubMed  CAS  Google Scholar 

  27. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Radiol. 2000;174:323–31.

    CAS  Google Scholar 

  28. Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol. 1995;2:399–404.

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg SN, Gazelle GS, Dawson SL, Mueller PR, Rittman WJ, Rosenthal DI. Radiofrequency tissue ablation using multiprobe arrays: greater tissue destruction than multiple probes operating alone. Acad Radiol. 1995;2:670–4.

    Article  PubMed  CAS  Google Scholar 

  30. Bangard C, Rosgen S, Wahba R, et al. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone. Eur Radiol. 2010;20:1073–8.

    Article  PubMed  Google Scholar 

  31. Rossi S, Buscarini E, Garbagnati F. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol. 1998;170:1015–22.

    PubMed  CAS  Google Scholar 

  32. Siperstein AE, Rogers SJ, Hansen PD, Gitomirsky A. Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery. 1997;122:1147–55.

    Article  PubMed  CAS  Google Scholar 

  33. Leveen RF. Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Interv Radiol. 1997;12:313–24.

    Google Scholar 

  34. Appelbaum L, Sosna J, Pearson R, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology. 2010;254(2):430–40.

    Article  PubMed  Google Scholar 

  35. McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol. 1996;3:418–22.

    Article  PubMed  CAS  Google Scholar 

  36. Desinger K, Stein T, Muller G, Mack M, Vogl T. Interstitial bipolar RF-thermotherapy (REITT) therapy by planning by computer simulation and MRI-monitoring – a new concept for minimally invasive procedures. Proc SPIE. 1999;3249:147–60.

    Article  Google Scholar 

  37. Lee JM, Han JK, Kim SH, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol. 2005;184:391–7.

    PubMed  Google Scholar 

  38. Seror O, N’Kontchou G, Ibraheem M, et al. Large (> or =5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes–initial experience in 26 patients. Radiology. 2008;248:288–96.

    Article  PubMed  Google Scholar 

  39. Lee JM, Han JK, Kim HC, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol. 2007;42:676–83.

    Article  PubMed  Google Scholar 

  40. Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3:636–44.

    Article  PubMed  CAS  Google Scholar 

  41. Goldberg SN, Solbiati L, Hahn PF, et al. Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology. 1998;209:371–9.

    PubMed  CAS  Google Scholar 

  42. Cha J, Choi D, Lee MW, et al. Radiofrequency ablation zones in ex vivo bovine and in vivo porcine livers: comparison of the use of internally cooled electrodes and internally cooled wet electrodes. Cardiovasc Intervent Radiol. 2009;32:1235–40.

    Article  PubMed  Google Scholar 

  43. Hines-Peralta A, Hollander CY, Solazzo S, Horkan C, Liu ZJ, Goldberg SN. Hybrid radiofrequency and cryoablation device: preliminary results in an animal model. J Vasc Interv Radiol. 2004;15:1111–20.

    PubMed  Google Scholar 

  44. Goldberg SN, Stein M, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. J Vasc Interv Radiol. 1999;10:907–16.

    Article  PubMed  CAS  Google Scholar 

  45. Gulesserian T, Mahnken AH, Schernthaner R, et al. Comparison of expandable electrodes in percutaneous radiofrequency ablation of renal cell carcinoma. Eur J Radiol. 2006;59:133–9.

    Article  PubMed  Google Scholar 

  46. McGahan JP, Loh S, Boschini FJ, et al. Maximizing parameters for tissue ablation by using an internally cooled electrode. Radiology. 2010;256:397–405.

    Article  PubMed  Google Scholar 

  47. Brace CL, Sampson LA, Hinshaw JL, Sandhu N, Lee Jr FT. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol. 2009;20:118–24.

    Article  PubMed  Google Scholar 

  48. Laeseke PF, Sampson LA, Haemmerich D, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology. 2006;241:116–24.

    Article  PubMed  Google Scholar 

  49. Brace CL, Laeseke PF, Sampson LA, Frey TM, Mukherjee R, Lee Jr FT. Radiofrequency ablation with a high-power generator: device efficacy in an in vivo porcine liver model. Int J Hyperthermia. 2007;23:387–94.

    Article  PubMed  CAS  Google Scholar 

  50. Solazzo SA, Ahmed M, Liu Z, Hines-Peralta AU, Goldberg SN. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242:743–50.

    Article  PubMed  Google Scholar 

  51. Laeseke PF, Lee Jr FT, Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20:1224–9.

    Article  PubMed  Google Scholar 

  52. Cheng Z, Xiao Q, Wang Y, Sun Y, Lu T, Liang P. 915 MHz microwave ablation with implanted internal cooled-shaft antenna: initial experimental study in in vivo porcine livers [published online ahead of print January 12, 2010]. Eur J Radiol. 2010;79(1):131–5. doi:10.1016/j.ejrad.2009.12.013.

    Article  PubMed  Google Scholar 

  53. He N, Wang W, Ji Z, Li C, Huang B. Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol. 2010;17:894–9.

    Article  PubMed  Google Scholar 

  54. Lin SM, Lin CC, Chen WT, Chen YC, Hsu CW. Radiofrequency ablation for hepatocellular carcinoma: a prospective comparison of four radiofrequency devices. J Vasc Interv Radiol. 2007;18:1118–25.

    Article  PubMed  Google Scholar 

  55. Lu DS, Raman SS, Limanond P, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14:1267–74.

    PubMed  Google Scholar 

  56. Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227:559–65.

    Article  PubMed  CAS  Google Scholar 

  57. Goldberg SN, Hahn PF, Halpern EF, Fogle R, Gazelle GS. Radiofrequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology. 1998;209:761–9.

    PubMed  CAS  Google Scholar 

  58. Horkan C, Ahmed M, Liu Z, et al. Radiofrequency ablation: effect of pharmacologic modulation of hepatic and renal blood flow on coagulation diameter in a VX2 tumor model. J Vasc Interv Radiol. 2004;15:269–74.

    PubMed  Google Scholar 

  59. Hines-Peralta A, Sukhatme V, Regan M, Signoretti S, Liu ZJ, Goldberg SN. Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models. Radiology. 2006;240:82–9.

    Article  PubMed  Google Scholar 

  60. Hakime A, Hines-Peralta A, Peddi H, et al. Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice. Radiology. 2007;244:464–70.

    Article  PubMed  Google Scholar 

  61. Mostafa EM, Ganguli S, Faintuch S, Mertyna P, Goldberg SN. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol. 2008;19:1740–8.

    Article  PubMed  Google Scholar 

  62. Goldberg SN, Ahmed M, Gazelle GS, et al. Radiofrequency thermal ablation with adjuvant saline injection: effect of electrical conductivity on tissue heating and coagulation. Radiology. 2001;219:157–65.

    PubMed  CAS  Google Scholar 

  63. Aube C, Schmidt D, Brieger J, et al. Influence of NaCl concentrations on coagulation, temperature, and electrical conductivity using a perfusion radiofrequency ablation system: an ex vivo experimental study. Cardiovasc Intervent Radiol. 2007;30:92–7.

    Article  PubMed  Google Scholar 

  64. Miao Y, Ni Y, Yu J, Marchal G. A comparative study on validation of a novel cooled-wet electrode for radiofrequency liver ablation. Invest Radiol. 2000;35:438–44.

    Article  PubMed  CAS  Google Scholar 

  65. Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28:476–80.

    Article  PubMed  CAS  Google Scholar 

  66. Liu Z, Lobo SM, Humphries S, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am J Roentgenol. 2005;184:1347–52.

    PubMed  Google Scholar 

  67. Laeseke PF, Sampson LA, Winter 3rd TC, Lee Jr FT. Use of dextrose 5% in water instead of saline to protect against inadvertent radiofrequency injuries. AJR Am J Roentgenol. 2005;184:1026–7.

    PubMed  Google Scholar 

  68. Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN. Characterization of the RF ablation-induced ‘oven effect’: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia. 2006;22:327–42.

    Article  PubMed  Google Scholar 

  69. Ahmed M, Goldberg SN. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia. 2004;20:781–802.

    Article  PubMed  CAS  Google Scholar 

  70. Horkan C, Dalal K, Coderre JA, et al. Reduced tumor growth with combined radiofrequency ablation and radiation therapy in a rat breast tumor model. Radiology. 2005;235:81–8.

    Article  PubMed  Google Scholar 

  71. Goldberg SN, Hahn PF, Tanabe KK, et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol. 1998;9:101–11.

    Article  PubMed  CAS  Google Scholar 

  72. Goldberg SN, Kamel IR, Kruskal JB, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179:93–101.

    PubMed  Google Scholar 

  73. Head HW, Dodd 3rd GD, Bao A, et al. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology. 2010;255:405–14.

    Article  PubMed  Google Scholar 

  74. Kang SG, Yoon CJ, Jeong SH, et al. Single-session combined therapy with chemoembolization and radiofrequency ablation in hepatocellular carcinoma less than or equal to 5 cm: a preliminary study. J Vasc Interv Radiol. 2009;20:1570–7.

    Article  PubMed  Google Scholar 

  75. Ahrar K, Newman RA, Pang J, Vijjeswarapu MK, Wallace MJ, Wright KC. Dr. Gary J. Becker Young Investigator Award: relative thermosensitivity of cytotoxic drugs used in transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2004;2004(15):901–5.

    Google Scholar 

  76. Lee MW, Kim YJ, Park SW, et al. Percutaneous radiofrequency ablation of small hepatocellular carcinoma invisible on both ultrasonography and unenhanced CT: a preliminary study of combined treatment with transarterial chemoembolisation. Br J Radiol. 2009;82:908–15.

    Article  PubMed  CAS  Google Scholar 

  77. Morimoto M, Numata K, Kondou M, Nozaki A, Morita S, Tanaka K. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer. 2010;166(23):5452–60.

    Article  Google Scholar 

  78. Yang W, Chen MH, Wang MQ, et al. Combination therapy of radiofrequency ablation and transarterial chemoembolization in recurrent hepatocellular carcinoma after hepatectomy compared with single treatment. Hepatol Res. 2009;39:231–40.

    Article  PubMed  CAS  Google Scholar 

  79. Wang W, Shi J, Xie WF. Transarterial chemoembolization in combination with percutaneous ablation therapy in unresectable hepatocellular carcinoma: a meta-analysis. Liver Int. 2010;30:741–9.

    Article  PubMed  Google Scholar 

  80. Goldberg SN, Saldinger PF, Gazelle GS, et al. Percutaneous tumor ablation: increased coagulation necrosis with combined radiofrequency and percutaneous doxorubicin injection. Radiology. 2001;220:420–7.

    PubMed  CAS  Google Scholar 

  81. Ahmed M, Liu Z, Lukyanov AN, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology. 2005;235:469–77.

    Article  PubMed  Google Scholar 

  82. Vaage J, Barbara E. Tissue uptake and therapeutic effects of stealth doxorubicin. In: Lasic D, Martin F, editors. Stealth liposomes. Boca Raton, FL: CRC Press; 1995.

    Google Scholar 

  83. Gabizon A, Shiota R, Papahadjopoulos D. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst. 1989;81:1484–8.

    Article  PubMed  CAS  Google Scholar 

  84. Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26(5):485–98.

    Article  PubMed  CAS  Google Scholar 

  85. Ranson MR, Carmichael J, O’Byrne K, Stewart S, Smith D, Howell A. Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol. 1997;15:3185–91.

    PubMed  CAS  Google Scholar 

  86. Gordon AN, Granai CO, Rose PG, et al. Phase II study of liposomal doxorubicin in platinum- and paclitaxel-refractory epithelial ovarian cancer. J Clin Oncol. 2000;18:3093–100.

    PubMed  CAS  Google Scholar 

  87. Rivera E, Valero V, Arun B, et al. Phase II study of pegylated liposomal doxorubicin in combination with gemcitabine in patients with metastatic breast cancer. J Clin Oncol. 2003;21:3249–54.

    Article  PubMed  CAS  Google Scholar 

  88. Ahmed M, Monsky WE, Girnun G, et al. Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 2003;63:6327–33.

    PubMed  CAS  Google Scholar 

  89. Monsky WL, Kruskal JB, Lukyanov AN, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology. 2002;224:823–9.

    Article  PubMed  CAS  Google Scholar 

  90. Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother. 2009;10:333–43.

    Article  PubMed  CAS  Google Scholar 

  91. Solazzo S, Ahmed M, Schor-Bardach R, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology. 2010;255(1):62–74.

    Article  PubMed  Google Scholar 

  92. Yang W, Ahmed M, Elian M, et al. Do liposomal apoptotic enhancers increase tumor coagulation and end-point survival in percutaneous radiofrequency ablation of tumors in a rat tumor model? Radiology. 2010;257(3):685–96.

    Article  PubMed  Google Scholar 

  93. Yang W, Ahmed M, Tasawwar B, et al. Radiofrequency (RF) ablation combined with adjuvant liposomal quercetin-induced heat shock protein suppression increases tumor destruction and end-point survival in a rat animal model. In: Proceedings from the 27th Annual Meeting of the Society of Thermal Medicine; 2010 April 23–26; Clearwater Beach, Florida. Abstract.

    Google Scholar 

  94. Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722–7.

    Article  PubMed  CAS  Google Scholar 

  95. Danila D, Partha R, Elrod DB, Lackey M, Casscells SW, Conyers JL. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex Heart Inst J. 2009;36:393–403.

    PubMed  Google Scholar 

  96. Erdogan S, Torchilin VP. Gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. Methods Mol Biol. 2010;605:321–34.

    Article  PubMed  CAS  Google Scholar 

  97. Dupuy DE, DiPetrillo T, Gandhi S, et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest. 2006;129:738–45.

    Article  PubMed  Google Scholar 

  98. Algan O, Fosmire H, Hynynen K, et al. External beam radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate carcinoma. Cancer. 2000;89:399–403.

    Article  PubMed  CAS  Google Scholar 

  99. Solazzo S, Mertyna P, Peddi H, Ahmed M, Horkan C, Goldberg SN. RF ablation with adjuvant therapy: comparison of external beam radiation and liposomal doxorubicin on ablation efficacy in an animal tumor model. Int J Hyperthermia. 2008;24:560–7.

    Article  PubMed  CAS  Google Scholar 

  100. Chan MD, Dupuy DE, Mayo-Smith WW, Ng T, Dipetrillo TA. Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer [published online ahead of print August 24, 2010]. Brachytherapy. 2011;10(3):253–9. doi:10.1016.j.brachy.2010.07.002.

    Article  PubMed  Google Scholar 

  101. Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17:1117–24.

    Article  PubMed  Google Scholar 

  102. Mayer R, Hamilton-Farrell MR, van der Kleij AJ, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181:113–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneeb Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmed, M., Goldberg, S.N. (2012). Principles of Radiofrequency Ablation. In: Mueller, P., Adam, A. (eds) Interventional Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1469-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1469-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1468-2

  • Online ISBN: 978-1-4419-1469-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics