Skip to main content

Targeting Energy Metabolism in Brain Cancer with Restricted Diets

  • Chapter
  • First Online:
Glioblastoma

Abstract

Malignant brain tumors are a significant health problem in children and adults. Conventional therapeutic approaches have been largely unsuccessful in providing long-term management. As a metabolic disorder involving the dysregulation of glycolysis and respiration (Warburg effect), malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons, and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome can transition from one energy state to another. Mutations restrict genomic flexibility. We propose an alternative approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported by recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with caloric restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisenberg AC (1961) The glycolysis and respiration of tumors. Academic Press, New York, p 224

    Google Scholar 

  • Ali MA, Yasui F, Matsugo S, Konishi T (2000) The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radic Res 32:429–438

    Article  CAS  PubMed  Google Scholar 

  • Andersson AK, Ronnback L, Hansson E (2005) Lactate induces tumour necrosis factor-alpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primary cultures. J Neurochem 93:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Arismendi-Morillo GJ, Castellano-Ramirez AV (2008) Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc 57:33–39

    Article  Google Scholar 

  • Aruna RM, Basu D (1976) Glycolipid metabolism in tumours of central nervous system. Indian J Biochem Biophys 13:158–160

    CAS  PubMed  Google Scholar 

  • Assimakopoulou M, Sotiropoulou Bonikou G, Maraziotis T, Papadakis N, Varakis I (1997) Microvessel density in brain tumors. Anticancer Res 17:4747–4753

    CAS  PubMed  Google Scholar 

  • Birkholz D, Korpal-Szczyrska M, Kaminska H, Bien E, Polczynska K, Stachowicz-Stencel T, Szolkiewicz A (2005) Influence of surgery and radiotherapy on growth and pubertal development in children treated for brain tumour. Med Wieku Rozwoj 9:463–469

    PubMed  Google Scholar 

  • Birt DF, Yaktine A, Duysen E (1999) Glucocorticoid mediation of dietary energy restriction inhibition of mouse skin carcinogenesis. J Nutr 129:571S–574S

    CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  • Bowers DC, Liu Y, Leisenring W, McNeil E, Stovall M, Gurney JG, Robison LL, Packer RJ, Oeffinger KC (2006) Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the childhood cancer survivor study. J Clin Oncol 24:5277–5282

    Article  PubMed  Google Scholar 

  • Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, Thompson CB (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173

    Article  CAS  PubMed  Google Scholar 

  • Cahill GF Jr (1970) Starvation in man. N Engl J Med 282:668–675

    Article  CAS  PubMed  Google Scholar 

  • Cahill GF Jr, Veech RL (2003) Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 114:149–161; discussion 162–143

    Google Scholar 

  • Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, Batchelor TT, Futreal PA, Stratton MR, Curry WT, Iafrate AJ, Louis DN (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13:2038–2045

    Article  CAS  PubMed  Google Scholar 

  • Canuto RA, Biocca ME, Muzio G, Dianzani MU (1989) Fatty acid composition of phospholipids in mitochondria and microsomes during diethylnitrosamine carcinogenesis in rat liver. Cell Biochem Funct 7:11–19

    Article  CAS  PubMed  Google Scholar 

  • Chance B (2005) Was Warburg right? Or was it that simple? Cancer Biol Ther 4:125–126

    Article  PubMed  Google Scholar 

  • Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93:8502–8507

    Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  • Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP (2002) Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 59:264–272

    Article  CAS  PubMed  Google Scholar 

  • Claes A, Wesseling P, Jeuken J, Maass C, Heerschap A, Leenders WP (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7:71–78

    Article  CAS  PubMed  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism in the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry, 6th edn. Lippincott-Raven, New York, pp 637–669

    Google Scholar 

  • Clarson CL, Del Maestro RF (1999) Growth failure after treatment of pediatric brain tumors. Pediatrics 103:E37

    Article  CAS  PubMed  Google Scholar 

  • Cleary MP, Jacobson MK, Phillips FC, Getzin SC, Grande JP, Maihle NJ (2002) Weight-cycling decreases incidence and increases latency of mammary tumors to a greater extent than does chronic caloric restriction in mouse mammary tumor virus-transforming growth factor-alpha female mice. Cancer Epidemiol Biomarkers Prev 11:836–843

    CAS  PubMed  Google Scholar 

  • Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 18:1657–1669

    Article  CAS  PubMed  Google Scholar 

  • Colowick SP (1961) The status of Warburg’s theory of glycolysis and respiration in tumors. Q Rev Biol 36:273–276

    Article  Google Scholar 

  • Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG (2004) The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis 25:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Davis FG, Malmer BS, Aldape K, Barnholtz-Sloan JS, Bondy ML, Brannstrom T, Bruner JM, Burger PC, Collins VP, Inskip PD, Kruchko C, McCarthy BJ, McLendon RE, Sadetzki S, Tihan T, Wrensch MR, Buffler PA (2008) Issues of diagnostic review in brain tumor studies: from the brain tumor epidemiology consortium. Cancer Epidemiol Biomarkers Prev 17:484–489

    Article  PubMed  Google Scholar 

  • DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10:767–777

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Selgrade MK, Gilmour IM, Lange RW, Park P, Luster MI, Kari FW (1998) Altered alveolar macrophage function in calorie-restricted rats. Am J Respir Cell Mol Biol 19:462–469

    CAS  PubMed  Google Scholar 

  • Duan W, Lee J, Guo Z, Mattson MP (2001) Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury. J Mol Neurosci 16:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ehsani S, Hodaie M, Liebsch NJ, Gentili F, Kiehl TR (2008) Anaplastic glioma after high-dose proton-photon radiation treatment for low-grade skull base chondrosarcoma. J Neurooncol 88:231–236

    Article  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  CAS  PubMed  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer cell 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Fearon KC (1988) Nutritional pharmacology in the treatment of neoplastic disease. Baillieres Clin Gastroenterol 2:941–949

    Article  CAS  PubMed  Google Scholar 

  • Fell DA, Thomas S (1995) Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J 311(part 1):35–39

    Google Scholar 

  • Fisher PG, Buffler PA (2005) Malignant gliomas in 2005: where to GO from here? JAMA 293:615–617

    Article  CAS  PubMed  Google Scholar 

  • Floridi A, Paggi MG, Fanciulli M (1989) Modulation of glycolysis in neuroepithelial tumors. J Neurosurg Sci 33:55–64

    CAS  PubMed  Google Scholar 

  • Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    CAS  PubMed  Google Scholar 

  • Fredericks M, Ramsey RB (1978) 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem 31:1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Freeman JM, Freeman JB, Kelly MT (2000) The ketogenic diet: a treatment for epilepsy, 3rd edn. Demos, New York, p 236

    Google Scholar 

  • Freeman JM, Kossoff EH, Hartman AL (2007a) The ketogenic diet: one decade later. Pediatrics 119:535–543

    Article  PubMed  Google Scholar 

  • Freeman JM, Kossoff EH, Freeman JB, Kelly MT (2007b) The ketogenic diet: a treatment for children and others with epilepsy, 4th edn. Demos, New York, p 309

    Google Scholar 

  • Galarraga J, Loreck DJ, Graham JF, DeLaPaz RL, Smith BH, Hallgren D, Cummins CJ (1986) Glucose metabolism in human gliomas: correspondence of in situ and in vitro metabolic rates and altered energy metabolism. Metab Brain Dis 1:279–291

    Article  CAS  PubMed  Google Scholar 

  • Garber K (2006) Energy deregulation: licensing tumors to grow. Science 312:1158–1159

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev 5:857–866

    CAS  Google Scholar 

  • Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86:529–537

    Article  CAS  PubMed  Google Scholar 

  • Greenspan RJ (2001) The flexible genome. Nat Rev Genet 2:383–387

    Article  CAS  PubMed  Google Scholar 

  • Gullino PM, Ziche M, Alessandri G (1990) Gangliosides, copper ions and angiogenic capacity of adult tissues. Cancer Metastasis Rev 9:239–251

    Article  CAS  PubMed  Google Scholar 

  • Gupta T, Sarin R (2002) Poor-prognosis high-grade gliomas: evolving an evidence-based standard of care. Lancet Oncol 3:557–564

    Article  PubMed  Google Scholar 

  • Guzman M, Blazquez C (2004) Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins, leukotrienes, and essential fatty acids 70:287–292

    Article  CAS  PubMed  Google Scholar 

  • Haces ML, Hernandez-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211:85–96

    Article  CAS  PubMed  Google Scholar 

  • Hartman AL, Vining EP (2007) Clinical aspects of the ketogenic diet. Epilepsia 48:31–42

    Article  CAS  PubMed  Google Scholar 

  • Hsu SC, Volpert OV, Steck PA, Mikkelsen T, Polverini PJ, Rao S, Chou P, Bouck NP (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56:5684–5691

    CAS  PubMed  Google Scholar 

  • Ikezaki K, Black KL, Conklin SG, Becker DP (1992) Histochemical evaluation of energy metabolism in rat glioma. Neurol Res 14:289–293

    CAS  PubMed  Google Scholar 

  • Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K (2006) d-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson’s disease. J Neurosci Res 84:1376–1384

    Article  CAS  PubMed  Google Scholar 

  • Izycka-Swieszewska E, Rzepko R, Borowska-Lehman J, Stempniewicz M, Sidorowicz M (2003) Angiogenesis in glioblastoma–analysis of intensity and relations to chosen clinical data. Folia Neuropathol 41:15–21

    PubMed  Google Scholar 

  • Jendraschak E, Sage EH (1996) Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7:139–146

    Article  CAS  PubMed  Google Scholar 

  • Jukich PJ, McCarthy BJ, Surawicz TS, Freels S, Davis FG (2001) Trends in incidence of primary brain tumors in the United States, 1985–1994. Neuro Oncol 3:141–151

    CAS  PubMed  Google Scholar 

  • Kaatsch P, Rickert CH, Kuhl J, Schuz J, Michaelis J (2001) Population-based epidemiologic data on brain tumors in German children. Cancer 92:3155–3164

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J (1999) No meeting of minds on childhood cancer. Science 286:1832–1834

    Article  CAS  PubMed  Google Scholar 

  • Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444

    Article  CAS  PubMed  Google Scholar 

  • Kiebish MA, Seyfried TN (2005) Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors. BMC cancer 5:102

    Article  PubMed  CAS  Google Scholar 

  • Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN (2008a) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Kiebish MA, Han X, Cheng H, Seyfried TN (2008a) Mitochondrial lipidome and electron transport chain alterations in non-metastatic and metastatic murine brain tumors. J Neurochem 104:37–38

    Google Scholar 

  • Kiebish MA, Han X, Cheng H, Seyfried NT (2009) In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumors. ASN Neuro 1(3):art:e00011.doi:10.1042/AN20090011

    Google Scholar 

  • Kim DO, Davis LM, Sullivan PG, Maalouf M, Simeone TA, Brederode JV, Rho JM (2007) Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem 10:1316–1326

    Article  CAS  Google Scholar 

  • Kirsch WM, Schulz Q, Van Buskirk J, Nakane P (1972) Anaerobic energy metabolism in brain tumors. Prog Exp Tumor Res (Fortschritte der experimentellen Tumorforschung) 17:163–191

    CAS  Google Scholar 

  • Kirsch M, Schackert G, Black PM (2000) Anti-angiogenic treatment strategies for malignant brain tumors. J Neurooncol 50:149–163

    Article  CAS  PubMed  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  CAS  PubMed  Google Scholar 

  • Kossoff EH, Rowley H, Sinha SR, Vining EP (2008a) A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 49:316–319

    Article  CAS  PubMed  Google Scholar 

  • Kossoff EH, Laux LC, Blackford R, Morrison PF, Pyzik PL, Hamdy RM, Turner Z, Nordli DR Jr (2008b) When do seizures usually improve with the ketogenic diet? Epilepsia 49:329–333

    Article  PubMed  Google Scholar 

  • Kritchevsky D (1999) Fundamentals of nutrition: applications to cancer research. In: Heber D, Blackburn GL, Go VLW (eds) Nutritional oncology. Academic, Boston, MA, pp 5–10

    Google Scholar 

  • Landau BR, Laszlo J, Stengle J, Burk D (1958) Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-d-glucose. J Natl Cancer Inst 21:485–494

    CAS  PubMed  Google Scholar 

  • Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372

    Article  CAS  PubMed  Google Scholar 

  • Lichtor T, Dohrmann GJ (1986) Respiratory patterns in human brain tumors. Neurosurgery 19:896–899

    Article  CAS  PubMed  Google Scholar 

  • Lowry JK, Snyder JJ, Lowry PW (1998) Brain tumors in the elderly: recent trends in a Minnesota cohort study. Arch Neurol 55:922–928

    Article  CAS  PubMed  Google Scholar 

  • Magee BA, Potezny N, Rofe AM, Conyers RA (1979) The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci 57:529–539

    Article  CAS  PubMed  Google Scholar 

  • Mahoney LB, Denny CA, Seyfried TN (2006) Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 5:13

    Article  PubMed  CAS  Google Scholar 

  • Mangiardi JR, Yodice P (1990) Metabolism of the malignant astrocytoma. Neurosurgery 26:1–19

    Article  CAS  PubMed  Google Scholar 

  • Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN (2004) Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab 1:11

    Article  CAS  Google Scholar 

  • Marsh J, Mukherjee P, Seyfried TN (2008a) Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-d-glucose and the restricted ketogenic diet. Nutr Metab 5:33

    Article  CAS  Google Scholar 

  • Marsh J, Mukherjee P, Seyfried TN (2008a) Akt-dependent proapoptotic effects of caloric restriction on late-stage management of a PTEN/TSC2-deficient mouse astrocytoma. Proc Am Assoc Cancer Res 99:1250

    Google Scholar 

  • Masuda R, Monahan JW, Kashiwaya Y (2005) d-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 80:501–509

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 Regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  • McGirt MJ, Chaichana KL, Gathinji M, Attenello F, Than K, Ruiz AJ, Olivi A, Quinones-Hinojosa A (2008) Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery 63:286–291; discussion 291

    Google Scholar 

  • McLendon RE, Halperin EC (2003) Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer 98:1745–1748

    Article  PubMed  Google Scholar 

  • Meixensberger J, Herting B, Roggendorf W, Reichmann H (1995) Metabolic patterns in malignant gliomas. J Neurooncol 24:153–161

    Article  CAS  PubMed  Google Scholar 

  • Mies G, Paschen W, Ebhardt G, Hossmann KA (1990) Relationship between blood flow, glucose metabolism, protein synthesis, glucose and ATP content in experimentally-induced glioma (RG1 2.2) of rat brain. J Neurooncol 9:17–28

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    Article  CAS  PubMed  Google Scholar 

  • Morris AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28:109–121

    Article  CAS  PubMed  Google Scholar 

  • Morris EB, Gajjar A, Okuma JO, Yasui Y, Wallace D, Kun LE, Merchant TE, Fouladi M, Broniscer A, Robison LL, Hudson MM (2007) Survival and late mortality in long-term survivors of pediatric CNS tumors. J Clin Oncol 25:1532–1538

    Article  PubMed  Google Scholar 

  • Mott RT, Turner KC, Bigner DD, McLendon RE (2008) Utility of EGFR and PTEN numerical aberrations in the evaluation of diffusely infiltrating astrocytomas. Lab Invest J Neurosurg 108:330–335

    Google Scholar 

  • Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK (1999a) Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst 91:512–523

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Zhau J-R, Sotnikov AV, Clinton SK (1999a) Dietary and nutritional modulation of tumor angiogenesis. In: Teicher BA (ed) Antiangiogenic agents in cancer therapy. Humana, Totowa, NJ, pp 237–261

    Google Scholar 

  • Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN (2002) Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer 86:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Abate LE, Seyfried TN (2004) Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 10:5622–5629

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu S, Nakamichi Y, Inoue N, Inoue M, Nishino H, Sawa H (1996) Rat C6 glioma cell growth is related to glucose transport and metabolism. Biochem J 319 (part 2):477–482

    Google Scholar 

  • Nebeling LC, Lerner E (1995) Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc 95:693–697

    Article  CAS  PubMed  Google Scholar 

  • Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14:202–208

    CAS  PubMed  Google Scholar 

  • Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    CAS  PubMed  Google Scholar 

  • Oudard S, Arvelo F, Miccoli L, Apiou F, Dutrillaux AM, Poisson M, Dutrillaux B, Poupon MF (1996) High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer 74:839–845

    CAS  PubMed  Google Scholar 

  • Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF (1997) Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17:1903–1911

    CAS  PubMed  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Pan JG, Mak TW (2007) Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007:pe14

    Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  Google Scholar 

  • Patel NV, Finch CE (2002) The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiol Aging 23:707–717

    Article  CAS  PubMed  Google Scholar 

  • Patel MS, Russell JJ, Gershman H (1981) Ketone-body metabolism in glioma and neuroblastoma cells. Proc Natl Acad Sci USA 78:7214–7218

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Pennathur S, Ido Y, Heller JI, Byun J, Danda R, Pergola P, Williamson JR, Heinecke JW (2005) Reactive carbonyls and polyunsaturated fatty acids produce a hydroxyl radical-like species: a potential pathway for oxidative damage of retinal proteins in diabetes. J Biol Chem 280:22706–22714

    Google Scholar 

  • Pfeifer HH, Thiele EA (2005) Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 65:1810–1812

    Article  CAS  PubMed  Google Scholar 

  • Portais JC, Voisin P, Merle M, Canioni P (1996) Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 78:155–164

    Article  CAS  PubMed  Google Scholar 

  • Potts R (1996) Humanity’s descent: the consequences of ecological instability. William Morrow, New York, p 325

    Google Scholar 

  • Potts R (2002) Complexity of adaptibility in human evolution. In: Goodman M, Moffat AS (eds) Probing human origins. American Academy of Arts & Sciences, Cambridge, MA, pp 33–57

    Google Scholar 

  • Rasnick D, Duesberg PH (1999) How aneuploidy affects metabolic control and causes cancer. Biochem J 340 (part 3):621–630

    Google Scholar 

  • Rebrin I, Kamzalov S, Sohal RS (2003) Effects of age and caloric restriction on glutathione redox state in mice. Free Radic Biol Med 35:626–635

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CG, Wise RJ, Gibbs JM, Frackowiak RS, Hatazawa J, Palmer AJ, Thomas DG, Jones T (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14:614–626

    Article  CAS  PubMed  Google Scholar 

  • Ristow M (2006) Oxidative metabolism in cancer growth. Curr Opin Clin Nutr Metab Care 9:339–345

    Article  CAS  PubMed  Google Scholar 

  • Roeder LM, Poduslo SE, Tildon JT (1982) Utilization of ketone bodies and glucose by established neural cell lines. J Neurosci Res 8:671–682

    Article  CAS  PubMed  Google Scholar 

  • Roslin M, Henriksson R, Bergstrom P, Ungerstedt U, Bergenheim AT (2003) Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol 61:151–160

    Article  PubMed  Google Scholar 

  • Rous P (1914) The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med 20:433–451

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri BA, Klurfeld DM, Kritchevsky D (1987) Biochemical alterations in 7, 12-dimethylbenz[a]anthracene-induced mammary tumors from rats subjected to caloric restriction. Biochim Biophys Acta 929:239–246

    Article  CAS  PubMed  Google Scholar 

  • Salas A, Yao YG, Macaulay V, Vega A, Carracedo A, Bandelt HJ (2005) A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:e296

    Article  PubMed  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  PubMed  Google Scholar 

  • Seo JH, Lee YM, Lee JS, Kang HC, Kim HD (2007) Efficacy and tolerability of the ketogenic diet according to lipid:nonlipid ratios–comparison of 3:1 with 4:1 diet. Epilepsia 48:801–805

    Article  CAS  PubMed  Google Scholar 

  • Seyfried TN (2001) Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspect Biol Med 44:263–282

    Article  CAS  PubMed  Google Scholar 

  • Seyfried TN, Mukherjee P (2005a) Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab 2:30

    Article  CAS  Google Scholar 

  • Seyfried TN, Mukherjee P (2005a) Anti-angiogenic and pro-apoptotic effects of dietary restriction in experimental brain cancer: role of glucose and ketone bodies. In: Meadows GG (ed) Integration/interaction of oncologic growth, vol 15, 2nd edn. Kluwer Academic, New York, pp 259–270

    Google Scholar 

  • Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Shelton HM (1974) Fasting for renewal of life. Am Nat Hygene Society, Tampa, FL, p 314

    Google Scholar 

  • Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ (2007) Metabolic changes during carcinogenesis: potential impact on invasiveness. J Theor Biol 244:703–713

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff B, Eddy WH, Saelhof CC, Beach J (1955) Glucose antagonists in experimental cancer. AMA Arch Pathol 59:729–732

    CAS  PubMed  Google Scholar 

  • Sonnenschein C, Soto AM (1999) The society of cells: cancer and the control of cell proliferation. Springer, New York, p 154

    Google Scholar 

  • Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211

    Article  CAS  PubMed  Google Scholar 

  • Spindler SR (2005) Rapid and reversible induction of the longevity anticancer and genomic effects of caloric restriction. Mech Ageing Dev 126:960–966

    Article  CAS  PubMed  Google Scholar 

  • Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    Article  CAS  PubMed  Google Scholar 

  • Stafstrom CE, Rho JM (2004) Epilepsy and the ketogenic diet. Humana, Totowa, NJ, p 352

    Google Scholar 

  • Stewart JW, Koehler K, Jackson W, Hawley J, Wang W, Au A, Myers R, Birt DF (2005) Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Strohman R (2002) Maneuvering in the complex path from genotype to phenotype. Science 296:701–703

    Article  CAS  PubMed  Google Scholar 

  • Strohman R (2003) Thermodynamics–old laws in medicine and complex disease. Nat Biotechnol 21:477–479

    Article  CAS  PubMed  Google Scholar 

  • Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    CAS  PubMed  Google Scholar 

  • Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S, Nose T (1996) Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res 56:2185–2190

    CAS  PubMed  Google Scholar 

  • Tannenbaum A (1942) The genesis and growth of tumors. II. Effects of caloric restriction per se. Cancer Res 2:460–467

    CAS  Google Scholar 

  • Tannenbaum A (1959) Nutrition and cancer. In: Homburger F (ed) Physiopathology of cancer. Paul B. Hober, New York, pp 517–562

    Google Scholar 

  • Thomas S, Fell DA (1998) A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur J Biochem/FEBS 258:956–967

    Article  CAS  Google Scholar 

  • Thompson HJ, McGinley JN, Spoelstra NS, Jiang W, Zhu Z, Wolfe P (2004) Effect of dietary energy restriction on vascular density during mammary carcinogenesis. Cancer Res 64:5643–5650

    Article  CAS  PubMed  Google Scholar 

  • Tisdale MJ (1984) Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells. Cancer Biochem Biophys 7:101–107

    CAS  PubMed  Google Scholar 

  • Tisdale MJ (1997) Biology of cachexia. J Natl Cancer Inst 89:1763–1773

    Article  CAS  PubMed  Google Scholar 

  • Tisdale MJ, Brennan RA (1983) Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer 47:293–297

    CAS  PubMed  Google Scholar 

  • Todorov PT, Wyke SM, Tisdale MJ (2007) Identification and characterization of a membrane receptor for proteolysis-inducing factor on skeletal muscle. Cancer Res 67:11419–11427

    Article  CAS  PubMed  Google Scholar 

  • Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924

    Article  CAS  PubMed  Google Scholar 

  • VanItallie TB, Nufert TH (2003) Ketones: metabolism’s ugly duckling. Nutr Rev 61:327–341

    Article  PubMed  Google Scholar 

  • Veech RL (2002) Metabolic control analysis of ketone and insulin action: Implications for phenotyping of disease and design of therapy. http://www.biodynamichealthaging.org/

  • Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70:309–319

    Article  CAS  PubMed  Google Scholar 

  • Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247

    Article  CAS  PubMed  Google Scholar 

  • Vogt AM, Nef H, Schaper J, Poolman M, Fell DA, Kubler W, Elsasser A (2002) Metabolic control analysis of anaerobic glycolysis in human hibernating myocardium replaces traditional concepts of flux control. FEBS Lett 517:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE II, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Google Scholar 

  • Wallace DC (2005) Mitochondria and cancer: Warburg addressed. Cold Spring Harbor Symp Quant Biol 70:363–374

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1931) The metabolism of tumours. Richard R Smith, New York, p 327

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Thomas, Springfield, IL, p 436

    Google Scholar 

  • Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    CAS  PubMed  Google Scholar 

  • Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265

    Article  CAS  PubMed  Google Scholar 

  • Wittig R, Coy JF (2007) The role of glucose metabolism and glucose-associated signaling in cancer. Perspect Med Chem 1:64–82

    Google Scholar 

  • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol 292:C125–C136

    Article  CAS  Google Scholar 

  • Yamada KA, Rensing N, Thio LL (2005) Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 385:210–214

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN (2007) The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab 4:5

    Article  CAS  Google Scholar 

  • Zhu Z, Jiang W, Thompson HJ (2003) Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis 24:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman HM (1955) The nature of gliomas as revealed by animal experimentation. Am J Pathol 31:1–29

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Seyfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Seyfried, T.N., Kiebish, M.A., Mukherjee, P. (2010). Targeting Energy Metabolism in Brain Cancer with Restricted Diets. In: Ray, S. (eds) Glioblastoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0410-2_17

Download citation

Publish with us

Policies and ethics