Skip to main content

Early Nutrition and Later Obesity: Animal Models Provide Insights into Mechanisms

  • Conference paper
Early Nutrition Programming and Health Outcomes in Later Life

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 646))

Epidemiological evidence suggests that in utero as well as early postnatal life exposure to an imbalanced nutrition are both related to a greater propensity to become obese in later life. Rodent and sheep models of metabolic programming of obesity by early life nutrition include maternal low and high dietary protein and energy or food intake as well as high fat diets. Maternal nutritional imbalance during pregnancy and/or lactation programs energy expenditure, food intake and physical activity in the offspring. Underlying mechanisms of altered energy balance in programmed offspring are associated with disturbances of ontogeny of hypothalamic feeding circuits, leptin and glucocorticoid action which have long-lasting effects on food intake, energy expenditure and fat tissue metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andreasyan, K., A.L. Ponsonby, T. Dwyer, R. Morley, M. Riley, K. Dear and J. Cochrane (2007). Higher maternal dietary protein intake in late pregnancy is associated with a lower infant ponderal index at birth. Eur J Clin Nutr 61: 498–508.

    PubMed  CAS  Google Scholar 

  • Anguita, R.M., D.M. Sigulem and A.L. Sawaya (1993). Intrauterine food restriction is associated with obesity in young rats. J Nutr 123: 1421–1428.

    PubMed  CAS  Google Scholar 

  • Armitage, J.A., I.Y. Khan, P.D. Taylor, P. Nathanielsz and L. Poston (2004). Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 561(2): 355–377.

    Article  PubMed  CAS  Google Scholar 

  • Armitage, J.A., P.D. Taylor and L. Poston (2005). Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565(1): 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Ashworth, C.J., N. Hoggard, L. Thomas, J.G. Mercer, J.M. Wallace and R.G. Lea (2000). Placental leptin. Rev Reprod 5: 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Bayol, S.A., B.H. Simbi and N.C. Stickland (2005). A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol 567(Pt 3): 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Bellinger, L., D.V. Sculley and S.C. Langley-Evans (2006). Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes 30: 729–738.

    Article  CAS  Google Scholar 

  • Bertram, C., A.R. Trowern, N. Copin, A.A. Jackson and C.B. Whorwood (2001). The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142: 2841–2853.

    Article  PubMed  CAS  Google Scholar 

  • Boney, C.M, A. Verma, R.Tucker and B.R. Vohr (2005). Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115: e290–e296.

    Article  PubMed  Google Scholar 

  • Boullo-Ciocca, S., A. Dutour, V. Guillaume, V. Achard, C. Oliver and M. Grino (2005). Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and adulthood: its relationship with the metabolic syndrome. Diabetologia 54: 197–203.

    Google Scholar 

  • Buckley, A.J., A.L. Jaquiery and J.E. Harding (2005a). Nutritional programming of adult disease. Cell Tissue Res 322: 73–79.

    Article  Google Scholar 

  • Buckley, A.J., B. Keseru, J. Briody, M. Thompson, S.E. Ozanne and C.H. Thompson (2005b). Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 54: 500–507.

    Article  CAS  Google Scholar 

  • Cherala, G., B.H. Shapiro and A.P. D'mello (2006). Two low protein diets differentially affect food consumption in pregnant and lactating rats and long-term growth in their offspring. J Nutr 136: 2827–2833.

    PubMed  CAS  Google Scholar 

  • Clancy, B., R.B. Darlington and B.L. Finlay (2001). Translating developmental time across mammalian species. Neuroscience 105: 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Dorner, G. and A. Plagemann (1994). Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26: 213–21.

    Article  PubMed  CAS  Google Scholar 

  • Daenzer, M., S. Ortmann, S. Klaus and C.C. Metges (2002). Prenatal high protein exposure decreases energy expenditure and increases adiposity in young rats. J Nutr 132: 142–144.

    PubMed  CAS  Google Scholar 

  • Gluckman, P.D. and M.A. Hanson (2004). The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Gnanalingham, M.G., A. Mostyn, M.E. Symonds and T. Stephenson (2005). Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein 2. Am J Physiol Regul 289: 1407–1415.

    Google Scholar 

  • Grove, K.L. and M.A. Cowley (2005). Is ghrelin a signal for the development of metabolic systems? J Clin Invest 115: 3393–3397.

    Article  PubMed  CAS  Google Scholar 

  • Hales, C.N. and D. J. Barker (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35: 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Keith, S.W., D.T. Redden, P.T. Katzmarzyk, M.M. Bogganio, E.C. Hanlon, R.M. Benca, D. Ruden, A. Pietrobelli, J.L. Barger, C. Wang et al. (2006). Putative contributors to the secular increase in obesity: exploring the roads less travelled. Int J Obes 30: 1585–1594.

    Article  CAS  Google Scholar 

  • Kensara, O.A., S.A. Wootton, D.I. Phillips, M. Patel, A.A. Jackson and M. Elia (2005). Fetal programming of body composition: relation between birth weight and body composition measured by dual x-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 82: 980–987.

    PubMed  CAS  Google Scholar 

  • Khan, I.Y., P.D. Tylor, V. Dekou, P.T. Seed, L. Lakasing, D. Graham et al. (2003). Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 41: 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Langley-Evans, S.C. (2000). Critical differences between two low protein diet protocols in the programming of hypertension in rats. Int J Food Sci Nutr 51: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B.E. and E. Govek (1998). Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol Regul 275: R1375–R1379.

    Google Scholar 

  • Metges, C.C. and H.M. Hammon (2005). Nutritional programming: prenatal nutritional effects on the regulation of growth and metabolism. J Anim Feed Sci 14(Suppl. 1): 15–30.

    Google Scholar 

  • Okosun, I.S., Y. Liao, C.N. Rotimi, G.E. Dever and R.S. Cooper (2000). Impact of birth weight in ethnic variations in subcutaneous and central adiposity in American children aged 5–11 Years. Int J Obes Relat Metab Disord 24: 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Ong, K.K. (2006). Size at birth, postnatal growth and risk of obesity. Horm Res 65 (Suppl. 3): 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Ong, K.K., M.L. Ahmed, P.M. Emmett, M.A. Preece, D.B. Dunger and Avon Longitudinal study of pregnancy and childhood study team (2000). Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Brit Med J 320: 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Owen, C.G., R.M. Martin, P.H. Whincup, G.D. Smith and D.G. Cook (2005). Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 115: 1367–1377.

    Article  PubMed  Google Scholar 

  • Ozaki, T., H. Nishina, A. Hanson and L. Poston (2001). Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Ozanne, S.E. and C.N. Hales (2004). Lifespan: catch-up growth and obesity in male mice. Nature 427(6973): 411–412.

    Article  PubMed  CAS  Google Scholar 

  • Petry, C.J., S.E. Ozanne, C.L. Wang and C.N. Hales (1997). Early protein restriction and obesity independently induce hypertension in 1-Year-old rats. Clin Sci (Lond) 93: 147–152.

    CAS  Google Scholar 

  • Sarandakou, A., E. Protonotariou, D. Rizos, A. Malamitsi-Puchner, G. Giannaki, I. Phocas and G. Creatsas (2000). Serum leptin concentrations during perinatal period. Am J Perinatol 17: 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Stettler, N., V.A. Stallings, A.B. Troxel, J. Zhao, R. Schinnar, S.E. Nelson et al. (2005). Weight gain in the first week and life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation 111: 1897–1903.

    Article  PubMed  Google Scholar 

  • Stocker, C., J. O'Dowd, N.M. Morton, E. Wargent, M.V. Sennitt, D. Hislop, S. Glund, J.R. Seckl, J.R.S. Arch and M.A. Cawthorne (2004). Modulation of susceptibility to weight gain and insulin resistance in low birthweight rats by treatment of their mother with leptin during pregnancy and lactation. Int J Obes 28: 129–136.

    Article  CAS  Google Scholar 

  • Symonds, M.E., A. Mostyn, S. Pearce, H. Budge and T. Stephenson (2003). Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol 179: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Symonds, M.E., S. Pearce, J. Bispham, D.S. Gardner and T. Stephenson (2004). Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc 63: 397–403.

    Article  PubMed  Google Scholar 

  • Thone-Reineke, C., P. Kalk, M. Dorn, S. Klaus, K. Simon, T. Pfab, M. Godes, P. Persson, T. Unger and B. Hocher (2006). High-protein nutrition during pregnancy and lactation programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner. Am J Physiol Regul 291: R1025–R1030.

    CAS  Google Scholar 

  • Vickers, M.H., B.H. Breier, W.S. Cutfield, P.L. Hofman and P.D. Gluckman (2000). Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279: E83–E87.

    PubMed  CAS  Google Scholar 

  • Vickers, M.H., B.H. Breier, D. McCarthy and P.D. Gluckman (2003). Sedentary behaviour during postnatal life is determined by the prenatal environment and exacerbated by postnatal hyper-caloric nutrition. Am J Physiol Regul 285: R271–R273.

    CAS  Google Scholar 

  • Vickers, M.H., P.D. Gluckman, A.H. Coveny, P.L. Hofman, W.S. Cutfield, A. Gertler, B.H. Breier and M. Harris (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology 146: 4211–4216.

    Article  PubMed  CAS  Google Scholar 

  • Walker, B.R. (2007). Extra-adrenal regeneration of glucocorticoids by 11²-hydroxysteroid dehy-drogenase type 1: physiological regulator and pharmacological target for energy partitioning. Proc Nutr Soc 66: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, J.M., R.P. Aitken, J.S. Milne and W.W. Hay (2004). Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol Reprod 71: 1055–1062.

    Article  PubMed  CAS  Google Scholar 

  • Watson, R.E., J.M. DeSesso, M.E. Hurtt and G.D. Cappon (2006). Postnatal growth and morphological development of the brain: a species comparison. Birth Def Res (Part B) 77: 471–484.

    Article  CAS  Google Scholar 

  • Westerterp-Platenga, M.S. (2003). The significance of protein in food intake and body weight regulation. Curr Opin Clin Nutr Metab Care 6: 635–638.

    Article  Google Scholar 

  • Yura, S., H. Itoh, N. Sagawa, H. Yamamoto, H. Masuzaki, K. Nakao, M. Kawamura, M. Takemura, K. Kakui, Y. Ogawa and S. Fujii (2005). Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab 1: 371–378.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia C. Metges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Metges, C.C. (2009). Early Nutrition and Later Obesity: Animal Models Provide Insights into Mechanisms. In: Koletzko, B., Decsi, T., Molnár, D., de la Hunty, A. (eds) Early Nutrition Programming and Health Outcomes in Later Life. Advances in Experimental Medicine and Biology, vol 646. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9173-5_11

Download citation

Publish with us

Policies and ethics