Skip to main content

Advertisement

Log in

Nutritional programming of adult disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intrauterine and early neonatal life is a period of physiological plasticity, during which environmental influences may produce long-term effects. Both undernutrition and overnutrition during this period have been shown to change disease risk in adulthood. These effects are influenced by the type, timing and duration of inappropriate nutrition and by the previous nutritional environment and may not be reflected in changes in body size. An understanding of the interaction between nutrient imbalance and alteration of gene expression is likely to be the key to optimising future health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286

    Article  PubMed  Google Scholar 

  • Ascherio A (2002) Epidemiologic studies on dietary fats and coronary heart disease. Am J Med 113 (Suppl 9B):9S–12S

    Article  PubMed  Google Scholar 

  • Ashton N (2000) Perinatal development and adult blood pressure. Braz J Med Biol Res 33:731–740

    PubMed  Google Scholar 

  • Barker DJ, Bull AR, Osmond C, et al (1990) Fetal and placental size and risk of hypertension in adult life. BMJ 301:259–262

    PubMed  Google Scholar 

  • Bauer MK, Breier BH, Harding JE, et al (1995) The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology 136:1250–1257

    Article  PubMed  Google Scholar 

  • Belizan JM, Villar J, Bergel E, et al (1997) Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ 315:281–285

    Google Scholar 

  • Bergel E, Belizan JM (2002) A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. Br J Obstet Gynaecol 109:540–545

    Google Scholar 

  • Bishop NJ, Dahlenburg SL, Fewtrell MS, et al (1996) Early diet of preterm infants and bone mineralization at age five years. Acta Paediatr 85:230–236

    PubMed  Google Scholar 

  • Blair S, Caterson I, Cooney G (1996) Insulin response to a spontaneously ingested standard meal during the development of obesity in GTG-injected mice. Int J Obes 20:319–323

    Google Scholar 

  • Bloomfield FH, Oliver MH, Giannoulias CD, et al (2003a) Brief undernutrition in late-gestation sheep programs the hypothalamic–pituitary–adrenal axis in adult offspring. Endocrinology 144:2933–2940

    Article  PubMed  Google Scholar 

  • Bloomfield FH, Oliver MH, Hawkins P, et al (2003b) A periconceptional nutritional origin for noninfectious preterm birth. Science 300:606

    Article  PubMed  Google Scholar 

  • Bloomfield FH, Oliver MH, Hawkins P, et al (2004) Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic–pituitary–adrenal axis in late gestation. Endocrinology 145:4278–4289

    Article  PubMed  Google Scholar 

  • Borwick SC, Rae MT, Brooks J, et al (2003) Undernutrition of ewe lambs in utero and in early post-natal life does not affect hypothalamic–pituitary function in adulthood. Anim Reprod Sci 77:61–70

    Article  PubMed  Google Scholar 

  • Boujendar S, Arany E, Hill D, et al (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825

    PubMed  Google Scholar 

  • Buckley AJ, Keseru B, Briody J, et al (2005) Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 54:500-507

    Article  PubMed  Google Scholar 

  • Calle M de la, Usandizaga R, Sancha M et al (2003) Homocysteine, folic acid and B-group vitamins in obstetrics and gynaecology. Eur J Obstet Gynecol Reprod Biol 107:125–134

    Article  PubMed  Google Scholar 

  • Campbell DM, Hall MH, Barker DJ, et al (1996) Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol 103:273–280

    PubMed  Google Scholar 

  • Chen CM, Wang LF, Su B (2004) Effects of maternal undernutrition during late gestation on the lung surfactant system and morphometry in rats. Pediatr Res 56:329–335

    PubMed  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132 (8 Suppl):2393S–2400S

    PubMed  Google Scholar 

  • Desai M, Crowther NJ, Lucas A, et al (1996) Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr 76:591–603

    PubMed  Google Scholar 

  • Dizik M, Christman JK, Wainfan E (1991) Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis 12:1307–1312

    PubMed  Google Scholar 

  • Edwards LJ, McMillen IC (2001) Maternal undernutrition increases arterial blood pressure in the sheep fetus during late gestation. J Physiol (Lond) 533:561–570

    Article  Google Scholar 

  • Edwards LJ, McMillen IC (2002) Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo–pituitary adrenal axis in sheep during late gestation. Biol Reprod 66:1562–1569

    PubMed  Google Scholar 

  • Felix TM, Leistner S, Giugliani R (2004) Metabolic effects and the methylenetetrahydrofolate reductase (MTHFR) polymorphism associated with neural tube defects in southern Brazil. Birth Defects Res 70:459–463

    Article  Google Scholar 

  • Ghosh P, Bitsanis D, Ghebremeskel K, et al (2001) Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol (Lond) 533:815–822

    Article  Google Scholar 

  • Gillman MW, Rifas-Shiman SL, Kleinman KP, et al (2004) Maternal calcium intake and offspring blood pressure. Circulation 110:1990–1995

    PubMed  Google Scholar 

  • Godfrey K, Robinson S, Barker DJ, et al (1996) Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312:410–414

    PubMed  Google Scholar 

  • Guo F, Jen K-LC (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57:681–686

    Article  PubMed  Google Scholar 

  • Harding JE (1997a) Periconceptual nutrition determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation. Prenat Neonatal Med 2:310–319

    Google Scholar 

  • Harding JE (1997b) Prior growth rate determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation. Prenat Neonatal Med 2:300–309

    Google Scholar 

  • Harding JE, Gluckman PD (2001) Growth, metabolic, and endocrine adaptations to fetal undernutrition. In: Barker DJP (ed) Fetal origins of cardiovascular and lung disease. Dekker, New York, pp 181–198

    Google Scholar 

  • Hawkins P, Steyn C, McGarrigle HH, et al (2000) Cardiovascular and hypothalamic–pituitary–adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod Fertil Dev 12:443–456

    PubMed  Google Scholar 

  • Hindmarsh PC, Geary MP, Rodeck CH, et al (2000) Effect of early maternal iron stores on placental weight and structure. Lancet 356:719–723

    Article  PubMed  Google Scholar 

  • Hu JF, Nguyen PH, Pham NV, et al (1997) Modulation of IGF2 genomic imprinting in mice induced by 5-azacytidene, an inhibitor of DNA methylation. Mol Endocrinol 11:1891–1898

    Article  PubMed  Google Scholar 

  • Hu JM, Rho JY, Suzuki M, et al (2000) Effect of taurine in rat milk on the growth of offspring. J Vet Med Sci 62:693–698

    Article  PubMed  Google Scholar 

  • Joanette EA, Reusens B, Arany E, et al (2004) Low-protein diet during early life causes a reduction in the frequency of cells immunopositive for nestin and CD34 in both pancreatic ducts and islets in the rat. Endocrinology 145:3004–3013

    Article  PubMed  Google Scholar 

  • Khan IY, Taylor PD, Dekou V, et al (2003) Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 41:168–175

    Article  PubMed  Google Scholar 

  • Khan IY, Dekou V, Hanson MA, et al (2004) Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Hypertension 110:1097–1102

    Google Scholar 

  • Khan IY, Dekou V, Douglas G, et al (2005) A high fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol 288:R127-R133

    Google Scholar 

  • Kim KN, Kim YJ, Chang N (2004) Effects of the interaction between the C677T 5,10-methylenetetrahydrofolate reductase polymorphism and serum B vitamins on homocysteine levels in pregnant women. Eur J Clin Nutr 58:10–16

    Article  PubMed  Google Scholar 

  • Kind KL, Simonetta G, Clifton PM, et al (2002) Effect of maternal feed restriction on blood pressure in the adult guinea pig. Exp Physiol 87:469–477

    PubMed  Google Scholar 

  • Kind KL, Clifton PM, Grant PA, et al (2003) Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol 284:R140–R152

    Google Scholar 

  • Koukkou E, Ghosh P, Lowy C, et al (1998) Offspring of normal and diabetic rats fed saturated fat in pregnancy demonstrate vascular dysfunction. Circulation 98:2899–2904

    PubMed  Google Scholar 

  • Kwong WY, Wild AE, Roberts P, et al (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127:4195–4202

    PubMed  Google Scholar 

  • Langley-Evans SC (2001) Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc Nutr Soc 60:505–513

    PubMed  Google Scholar 

  • Langley-Evans SC, Nwagwu M (1998) Impaired growth and increased glucocorticoid-sensitive enzyme activities in tissues of rat fetuses exposed to maternal low protein diets. Life Sci 63:605–615

    Article  PubMed  Google Scholar 

  • Langley-Evans SC, Welham SJ, Sherman RC, et al (1996) Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin Sci 91:607–615

    PubMed  Google Scholar 

  • Lesage J, Blondeau B, Grino M, et al (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo–pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702

    PubMed  Google Scholar 

  • Lucas A, Morley R, Cole TJ, et al (1990) Early diet in preterm babies and developmental status at 18 months. Lancet 335:1477–1481

    Article  PubMed  Google Scholar 

  • Lucas A, Morley R, Cole TJ, et al (1992) Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339:261–264

    Article  PubMed  Google Scholar 

  • Merezak S, Hardikar AA, Yajnik CS, et al (2001) Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. J Endocrinol 171:299–308

    Article  PubMed  Google Scholar 

  • Moore SE, Cole TJ, Collinson AC, et al (1999) Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int J Epidemiol 28:1088–1095

    Article  PubMed  Google Scholar 

  • Moore VM, Davies MJ, Willson KJ, et al (2004) Dietary composition of pregnant women is related to size of the baby at birth. J Nutr 134:1820–1826

    PubMed  Google Scholar 

  • Nelson GH, McPherson J Jr, Perling L (1982) Observations on maternal dietary fat intake and fetal pulmonary maturation in rats. J Reprod Med 27:331–332

    PubMed  Google Scholar 

  • Oliver MH, Harding JE, Gluckman PD (2001a) Duration of maternal undernutrition in late gestation determines the reversibility of intrauterine growth restriction in sheep. Prenat Neonatal Med 6:271–279

    Google Scholar 

  • Oliver MH, Hawkins P, Breier BH, et al (2001b) Maternal undernutrition during the periconceptual period increases plasma taurine levels and insulin response to glucose but not arginine in the late gestational fetal sheep. Endocrinology 142:4576–4579

    Article  PubMed  Google Scholar 

  • Oliver MH, Breier BH, Gluckman PD, et al (2002) Birth weight rather than maternal nutrition influences glucose tolerance, blood pressure, and IGF-I levels in sheep. Pediatr Res 52:516–524

    Article  PubMed  Google Scholar 

  • Oliver MH, Hawkins P, Harding JE (2005) Periconceptional undernutrition alters fetal growth trajectory, metabolic and endocrine responses to fasting in late gestation fetal sheep. Pediatr Res 57:591-598

    Article  PubMed  Google Scholar 

  • Ramakrishnan U, Gonzalez-Cossio T, Neufeld LM, et al (2003) Multiple micronutrient supplementation during pregnancy does not lead to greater infant birth size than does iron-only supplementation: a randomized controlled trial in a semirural community in Mexico. Am J Clin Nutr 77:720–725

    PubMed  Google Scholar 

  • Ravelli AC, Meulen JH van der, Michels RP, et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  PubMed  Google Scholar 

  • Rees WD, Hay SM, Brown DS, et al (2000) Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses. J Nutr 130:1821–1826

    PubMed  Google Scholar 

  • Refsum H, Yajnik CS, Gadkari M, et al (2001) Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr 74:233–241

    PubMed  Google Scholar 

  • Roseboom TJ, Meulen JH van der, Osmond C, et al (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 84:595–598

    Article  PubMed  Google Scholar 

  • Roseboom TJ, Meulen JH van der, Montfrans GA van, et al (2001) Maternal nutrition during gestation and blood pressure in later life. J Hypertens 19:29–34

    PubMed  Google Scholar 

  • Scholl TO, Johnson WG (2000) Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr 71 (5 Suppl):1295S-1303S

    PubMed  Google Scholar 

  • Shiell AW, Campbell-Brown M, Haselden S, et al (2001) High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension 38:1282–1288

    PubMed  Google Scholar 

  • Siemelink M, Verhoef A, Dormnans JAMA, et al (2002) Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia 45:1397–1403

    PubMed  Google Scholar 

  • Simondon KB, Elguero E, Marra A, et al (2004) Season of birth is not associated with risk of early adult death in rural Senegal. Int J Epidemiol 33:130–136

    Article  PubMed  Google Scholar 

  • Steegers-Theunissen RP, Van Iersel CA, Peer PG, et al (2004) Hyperhomocysteinemia, pregnancy complications, and the timing of investigation. Obstet Gynecol 104:336–343

    PubMed  Google Scholar 

  • Storlien L, Higgins J, Thomas T, et al (2000) Diet composition and insulin action in animal models. Br J Nutr 83 (Suppl 1):S85–S90

    PubMed  Google Scholar 

  • Sugden MC, Holness MJ (2002) Gender-specific programming of insulin secretion and action. Endocrinology 175:757–767

    Article  Google Scholar 

  • Taylor PD, McConnell J, Khan IY, et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol 288:R134-R139

    Google Scholar 

  • Vadlamudi S, Kalhan SC, Patel MS (1995) Persistence of metabolic consequences in the progeny of rats fed a HC formula in their early postnatal life. Am J Physiol 269:E731–E738

    PubMed  Google Scholar 

  • Venu L, Harishankar N, Krishna TP, et al (2004a) Maternal dietary vitamin restriction increases body fat content but not insulin resistance in WNIN rat offspring up to 6 months of age. Diabetologia 47:1493–1501

    PubMed  Google Scholar 

  • Venu L, Harishankar N, Krishna TP, et al (2004b) Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance? Eur J Endocrinol 151:287–294

    Article  PubMed  Google Scholar 

  • Vickers MH, Breier BH, Cutfield WS, et al (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol 279:E83–E87

    Google Scholar 

  • Vickers MH, Breier BH, McCarthy D, et al (2003) Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol 285:R271–R273

    Google Scholar 

  • Wallace JM, Bourke DA, Aitken RP, et al (1999) Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and fetal growth in adolescent ewes carrying singleton fetuses. Biol Reprod 61:101–110

    PubMed  Google Scholar 

  • Wallace JM, Bourke DA, Aitken RP, et al (2002) Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep. J Physiol (Lond) 547:85–94

    Article  Google Scholar 

  • Wallace JM, Milne JS, Aitken RP (2004) Maternal growth hormone treatment from day 35 to 80 of gestation alters nutrient partitioning in favor of uteroplacental growth in the overnourished adolescent sheep. Biol Reprod 70:1277–1285

    Article  PubMed  Google Scholar 

  • Waterland RA, Garza C (2002) Early postnatal nutrition determines adult pancreatic glucose-responsive insulin secretion and islet gene expression in rats. J Nutr 132:357–364

    PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  Google Scholar 

  • Whorwood CB, Firth KM, Budge H, et al (2001) Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinology 142:2854–2864

    Article  PubMed  Google Scholar 

  • Wilson MJ, Shivapurkar N, Poirier LA (1984) Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem J 218:987–990

    PubMed  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, et al (1998) Maternal epigenetics and methyl supplements affect Agouti gene expression in Avy/a mice. FASEB J 12:949–957

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Harding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, A.J., Jaquiery, A.L. & Harding, J.E. Nutritional programming of adult disease. Cell Tissue Res 322, 73–79 (2005). https://doi.org/10.1007/s00441-005-1095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1095-7

Keywords

Navigation