Skip to main content

Biological and Chemical Complexity of Fusarium proliferatum

  • Chapter
  • First Online:
The Role of Plant Pathology in Food Safety and Food Security

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 3))

Abstract

In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad host range. It is a frequent component of ear rot diseases of maize and wheat, and also causes diseases of plants as diverse as asparagus, fig, onion, palm, pine, and rice. DNA-based, phylogenetic analyses have revealed a high level of genetic diversity within F. proliferatum but have provided no evidence for significant species substructure based on host or geographic origin. F. proliferatum produces a wide range of biologically active metabolites, including the mycotoxins beauvericin, fumonisins, fusaproliferin, fusaric acid, fusarins, and moniliformin. Its broad host range, ability to produce diverse biologically active metabolites, and its amenability to meiotic and molecular genetic analyses make F. proliferatum an excellent system for biological and chemical studies on fungal ecology, fungal-plant interactions, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas H, Cartwright RD, Shier WT, Abouzied MM, Bird CB, Rice LG, Ross PF et al (1998) Natural occurrence of fumonisins in rice with Fusarium sheath rot disease. Plant Dis 82:22–25

    Article  CAS  Google Scholar 

  • Abdalla MY, Al-Rokibah A, Moretti A, Mulè G (2000) Pathogenicity of toxigenic Fusarium proliferatum from date palm in Saudi Arabia. Plant Dis 84:321–324

    Article  Google Scholar 

  • Anthony S, Abeywickrama K, Dayananda R, Wijeratnam SW, Arambewela L (2004) Fungal pathogens associated with banana fruit in Sri Lanka, and their treatment with essential oils. Mycopathologia 157:91–97

    Article  PubMed  Google Scholar 

  • Armengol J, Moretti A, Perrone G, Vicent A, Bengoechea JA, García-Jiménez J (2005) Identification, incidence and characterization of Fusarium proliferatum on ornamental palms from Spain. Eur J Plant Pathol 112:123–131

    Article  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    PubMed  CAS  Google Scholar 

  • Conner RL, Hwang SF, Stevens RR (1996) Fusarium proliferatum: a new causal agent of black point in wheat. Can J Plant Pathol 18:419–423

    Article  Google Scholar 

  • Corpas-Hervias C, Melero-Vara JM, Molinero-Ruiz ML, Zurera-Muñoz C, Basallote-Ureba MJ (2006) Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Dis 90:1441–1451

    Article  CAS  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins chemistry, genetics and biology. APS Press, St. Paul, MN

    Google Scholar 

  • Desjardins AE, Busman M, Proctor RH, Stessman R (2007) Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit Contam 24:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Manandhar G, Plattner RD, Maragos CM, Shrestha K, McCormick SP (2000a) Occurrence of Fusarium species and mycotoxins in Nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J Agric Food Chem 48:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM (2000b) Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 66:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1–a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant-Microbe Interact 15:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Plattner RD (2000) Fumonisin B1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agric Food Chem 48:5773–5780

    Article  PubMed  CAS  Google Scholar 

  • Desjardins AE, Plattner RD, Nelson DR (1997) Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice and from various geographic areas. Appl Environ Microbiol 63:1838–1842

    PubMed  CAS  Google Scholar 

  • Dowd PF, Barnett CJ, Johnson ET, Beck JJ (2004) Leaf axil sampling of midwest U.S. maize for mycotoxigenic Fusarium fungi using PCR analysis. Mycopathologia 158:431–440

    Article  PubMed  CAS  Google Scholar 

  • Dugan FM, Hellier BC, Lupien SL (2003) First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathol 52:426

    Article  Google Scholar 

  • Dumroese RK, James RL, Wenny DL (1998) Interactions among Streptomyces griseoviridis, Fusarium root disease, and Douglas-fir seedlings. New Forest 15:181–191

    Article  Google Scholar 

  • Elmer WH (1995) A single mating population of Gibberella fujikuroi (Fusarium proliferatum) predominates in asparagus fields in Connecticut, Massachusetts, and Michigan. Mycologia 87:68–71

    Article  Google Scholar 

  • Elmer WH, Johnson DA, Mink GI (1996) Epidemiology and management of the diseases causal to asparagus decline. Plant Dis 80:117–125

    Article  Google Scholar 

  • Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agent against the grape downy mildew. Phytopathology 86:1010–1017

    Article  Google Scholar 

  • Galván GA, Koning-Boucoiran FS, Koopman WJM, Burger-Meijer K, Gozález PH, Waalwijk C, Kik C et al (2008) Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur J Plant Pathol 121:499–512

    Article  Google Scholar 

  • Ganassi S, Moretti A, Stornelli C, Fratello B, Bonvincini Pagliai AM, Logrieco A, Sabatini MA (2000) Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathologia 151:131–138

    Article  Google Scholar 

  • Geiser DM, Abbas HK, Desjardins AE, Hackett M, Juba JH, O’Donnell KL, Royse J, Tunali B (2003) Phylogenetic and biological species boundaries around Fusarium proliferatum. Proceedings of the Mycological society of America, Pacific Grove, CA

    Google Scholar 

  • Geiser DM, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJZN, Kuldau GA et al (2004) FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  • Ghiasian SA, Rezayat SM, Kord-Bacheh P, Maghsood AH, Yazdanpanah H, Shepard GS, Van Der Westhuizen L et al (2005) Fumonisin production by Fusarium species isolated from freshly harvested corn in Iran. Mycopathologia 159:31–40

    Article  PubMed  Google Scholar 

  • Hyun JW, Lee S-C, Kim D-H, Ko S-W, Kim K-S (2000) Fusarium fruit rot of citrus in Jeju Island. Mycobiology 28:158–162

    Google Scholar 

  • Jeney A, Béki E, Keszthelyi A, Leslie JF, Hornok L (2007) Cloning and characterization of Fpmtr1, an amino acid transporter gene of Fusarium proliferatum (Gibberella intermedia). J Basic Microbiol 47:16–24

    Article  PubMed  CAS  Google Scholar 

  • Jiménez M, Huerta T, Mateo R (1997) Mycotoxin production by Fusarium species isolated from bananas. Appl Environ Microbiol 63:364–369

    PubMed  Google Scholar 

  • Jurjevic Z, Wilson DM, Wilson JP, Geiser DM, Juba JH, Mubatanhema W, Widstrom NW et al (2005) Fusarium species of the Gibberella fujikuroi complex and fumonisin contamination of pearl millet and corn in Georgia, USA. Mycopathologia 159:401–406

    Article  PubMed  CAS  Google Scholar 

  • Klittich CJR, Leslie JF, Nelson PE, Marasas WFO (1997) Fusarium thapsinum (Gibberella thapsina): a new species in section Liseola from sorghum. Mycologia 89:643–652

    Article  Google Scholar 

  • Kritzinger Q, Aveling TAS, Marasas WFO, Rheeder JP, Van Der Westhuizen L, Shepard GS (2003) Mycoflora and fumonisin mycotoxins associated with cowpea [Vigna unguiculata (L.) Walp] seeds. J Agric Food Chem 51:2188–2192

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman EG (1982) Varieties of Gibberella fujikuroi with anamorphs in Fusarium section Liseola. Mycologia 74:759–768

    Article  Google Scholar 

  • Kwon S-I, von Dohlen CD, Anderson AJ (2001) Gene sequence analysis of an opportunistic wheat pathogen, an isolate of Fusarium proliferatum. Can J Bot 79:1115–1121

    CAS  Google Scholar 

  • Láday M, Mulè G, Moretti A, Juhász Á, Szécsi Á, Logrieco A (2004) Mitochondrial DNA variability in Fusarium proliferatum (Gibberella intermedia). Eur J Plant Pathol 110:563–571

    Article  Google Scholar 

  • Leslie JF (1995) Gibberella fujikuroi: available populations and variable traits. Can J Bot 73:S282–S291

    Article  Google Scholar 

  • Leslie JF, Anderson LL, Bowden RL, Lee Y-W (2007) Inter- and intra-specific genetic variation in Fusarium. Int J Food Microbiol 119:25–32

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA

    Google Scholar 

  • Leslie JF, Zeller KA, Logrieco A, Mulè G, Moretti A, Ritieni A (2004) Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl Environ Microbiol 70:2254–2262

    Article  PubMed  CAS  Google Scholar 

  • Logrieco A, Doko B, Moretti A, Frisullo S, Visconti A (1998) Occurrence of fumonisin B1 and B2 in Fusarium proliferatum infected asparagus plants. J Agric Food Chem 46:5201–6204

    Article  CAS  Google Scholar 

  • Logrieco A, Moretti A, Retieni A, Bottalico A, Corda P (1995) Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis 79:727–731

    Article  Google Scholar 

  • Malonek S, Bömke C, Bornberg-Bauer E, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005a) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296–1311

    Article  PubMed  CAS  Google Scholar 

  • Malonek S, Rojas MC, Hedden P, Gaskin P, Hopkins P, Tudzynski B (2005b) Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D). Appl Environ Microbiol 71:1462–1472

    Article  PubMed  CAS  Google Scholar 

  • Malonek S, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005c) Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl Environ Microbiol 71:6014–6025

    Article  PubMed  CAS  Google Scholar 

  • Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109(2):239–243

    Article  PubMed  CAS  Google Scholar 

  • Marasas WFO, Nelson PE, Toussoun TA (1984) Toxigenic Fusarium species: identity and mycotoxicology. The Pennsylvania State University Press, University Park, PA

    Google Scholar 

  • Marasas WFO, Riley RT, Hendricks K, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA et al (2004) Fumonisins disrupt shingolipid metabolism, folate transport and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutri 134:711–716

    CAS  Google Scholar 

  • Marasas WFO, Thiel PG, Rabie CJ (1986) Moniliformin production in Fusarium section Liseola. Mycologia 78:242–247

    Article  CAS  Google Scholar 

  • Marín S, Magan N, Serra J, Ramos AJ, Canela R, Sanchis V (1999) Fumoinisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J Food Sci 64:921–924

    Article  Google Scholar 

  • Marín S, Ramos AJ, Vásquez C, Sanchis V (2006) Contamination of pine nuts by fumonisin produced by strains of Fusarium prolieratum isolated from Pinus pinea. Lett Appl Microbiol 44:68–72

    Article  Google Scholar 

  • Miller JD, Savard ME, Schaafsma AW, Seifert KA, Reid LM (1995) Mycotoxin production by Fusarium moniliforme and Fusarium proliferatum from Ontario and occurrence of fumonisins in the 1993 corn crop. Can J Plant Pathol 17:233–239

    CAS  Google Scholar 

  • Moretti A, Ferracane R, Ritieni A, Frisullo S, Lops A, Logrieco A (2000) Fusarium species from fig in Apulia: biological and toxicological characterization. Mitt Biol Bundesanst Land-Forstwirtsch Berlin-Dahlem 377:31–32

    Google Scholar 

  • Moretti A, Logrieco A, Bottalico A, Ritieni A, Fogliano V, Randazzo G (1997) Diversity in beauvericin and fusaproliferin production by different populations of Gibberella fujikuroi (Fusarium section Liseola). Sydowia 48:44–56

    Google Scholar 

  • Moretti A, Logrieco A, Bottalico A, Ritieni A, Randazzo G (1994) Production of beauvericin by Fusarium proliferatum from maize in Italy. Mycotoxin Res 10:73–78

    Article  CAS  Google Scholar 

  • Moretti A, Mulè G, Perrone G, Bottalico A, D’erchia AM, Logrieco A (1999) Fusarium proliferatum from various plants: fertility, toxigenicity and characterization by RAPDs. Bull Inst Compr Agr Sci Kinki Univ 7:27–36

    CAS  Google Scholar 

  • Mulè G, Susca A, Stea G, Moretti A (2004) A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol 110:495–502

    Article  Google Scholar 

  • Munkvold G, Stahr HM, Logrieco A, Moretti A, Ritieni A (1998) Occurrence of fusaproliferin and beauvericin in Fusarium-contaminated livestock feed in Iowa. Appl Environ Microbiol 64:3923–3926

    PubMed  CAS  Google Scholar 

  • Naef A, Défago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116:129–143

    Article  CAS  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park, PA

    Google Scholar 

  • Nirenberg HI (1976) Untersuchugen über die morphologische and biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt Biol Bundesanst Land-Forstwirtsch Berlin-Dahlem 169:1–117

    Google Scholar 

  • Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458

    Article  Google Scholar 

  • O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78

    Article  Google Scholar 

  • O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248

    Article  PubMed  Google Scholar 

  • Ocamb CM, Juzwik J, Martin FB (2002) Fusarium spp. and Pinus strobus seedlings: root disease pathogens and taxa associated with seed. New Forest 24:67–79

    Article  Google Scholar 

  • Pascale M, Visconti A, Pronczuk M, Wisniewska H, Chelkowski J (2002) Accumulation of fumonisins, beauvericin and fusaproliferin in maize hybrids inoculated under field conditions with Fusarium proliferatum. Mycol Res 106:1026–1030

    Article  CAS  Google Scholar 

  • Plattner RD, Nelson PE (1994) Production of beauvericin by a strain of Fusarium proiferatum isolated from corn fodder for swine. Appl Environ Microbiol 60:3894–3896

    PubMed  CAS  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Busman M, Seo J-A, Lee Y-W, Plattner RD (2008) A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol 45:1016–1026

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822

    Article  PubMed  CAS  Google Scholar 

  • Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105

    Article  PubMed  CAS  Google Scholar 

  • Rim S-O, Lee J-H, Choi W-Y, Hwang S-K, Suh S-J, Lee I-J, Rhee I-K et al (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814

    CAS  Google Scholar 

  • Ritieni A, Fogliano V, Randazzo G, Scarallo A, Logrieco A, Moretti A, Mannina L et al (1995) Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Nat Toxins 3:17–20

    Article  PubMed  CAS  Google Scholar 

  • Samuels GJ, Nirenberg HI, Seifert KA (2001). In: Summerell B, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Perithecial species of Fusarium. Fusarium: Paul E. Nelson Memorial Symposium. APS Press, St. Paul, MN, pp 1–14

    Google Scholar 

  • Seefelder A, Gossman M, Humpf H-U (2002) Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2778–2781

    Article  PubMed  CAS  Google Scholar 

  • Sheldon JL (1904) A corn mold (Fusarium moniliforme n. sp.). Agric Exp Sta Nebr Annu Rep 17:32

    Google Scholar 

  • Srobarova A, Moretti A, Ferracane R, Ritieni A, Logrieco A (2002) Toxigenic Fusarium species of Liseola section in pre-harvest maize ear rot, and associated mycotoxins in Slovakia. Eur J Plant Pathol 108:299–306

    Article  CAS  Google Scholar 

  • Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol 118:165–172

    Article  CAS  Google Scholar 

  • Suarez L, Hendricks KA, Cooper SP, Sweeny AM, Hardy RJ, Larsen RD (2000) Neural tube defects among Mexican Americans living on the US-Mexico border: effects of folic acid and dietary folate. Amer J Epidemiol 152:1017–1023

    Article  CAS  Google Scholar 

  • Tesso T, Claflin LE, Tuinstra MR (2004) Estimation of combining ability for resistance to Fusarium stalk rot in grain Sorghum. Crop Sci 44:1195–1199

    Article  Google Scholar 

  • Thiel PG, Marasas WFO, Sydenham EW, Shepard GS, Gelderblom WCA, Nieuwenhuis JJ (1991) Survey of fumonisin production by Fusarium species. Appl Environ Microbiol 57:1089–1093

    PubMed  CAS  Google Scholar 

  • Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk C, van der Lee T, de Vries I, Hesselink T, Arts J, Kema GHJ (2004) Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol 110:533–544

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Marcie L. Moore and Stephanie N. Folmar for excellent technical assistance and to Hira K. Manandhar and Gyanu Manandhar for collection of grain samples in Nepal. Partial funding was provided to RHP by the International Short-term Mobility Program, National Research Council, Italy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Proctor, R.H., Desjardins, A.E., Moretti, A. (2009). Biological and Chemical Complexity of Fusarium proliferatum . In: Strange, R., Gullino, M. (eds) The Role of Plant Pathology in Food Safety and Food Security. Plant Pathology in the 21st Century, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8932-9_9

Download citation

Publish with us

Policies and ethics