Skip to main content

Part of the book series: Integrated Management of Plant Pests and Diseases ((IMPD,volume 3))

Abstract

Endophytes are microorganisms that inhabit the interior of a healthy plants. They offer great-untapped potentials, which can be exploited to maintain healthy crops. Many cultivated and wild type plants have been investigated for endophytic fungal metabolites which include guanidine and pyrrolizidine alkaloids, indole derivatives, sesquiterpenes, isocoumarin derivatives. These metabolites show beneficial effects to crop plants and many of them also have pesticidal and antimicrobial activity against plant and human pests and pathogens. Full potentials and efforts needed are herein discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agusta, A., Ohashi, K., & Shibuya, H. (2006). Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis. Journal of Natural Medicine, 60, 268-272.

    Article  CAS  Google Scholar 

  • Ahmad, S., Govindarajan, S., Funk, C. R., & Johnson-Cicalese, J. M. (1985). Fatality of house crickets on perennial ryegrasses infected with a fungal endophyte. Entomologia Experimentalis et Applicata, 39, 183-190.

    Article  Google Scholar 

  • Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophyte limit pathogen damage in a tropical tree. Proceedings of the National Academy of Science,USA, 100, 15649-15654.

    Article  CAS  Google Scholar 

  • Aulakh R. S., Gill, J. P. S., Bedi, J. S., Sharma, J. K., Joia, B. S., & Ockerman, H. W. (2006). Organochlorine pesticide residues in poultry feed, chicken muscle and eggs at poultry farm in Punjab, India. Journal of the Science of Food and Agriculture, 86, 741-744.

    Article  CAS  Google Scholar 

  • Betina, Y. (1992). Biological effects of the antibiotic brefeldin-A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiologica, 37, 3-11.

    Article  PubMed  CAS  Google Scholar 

  • Brady, S. F., Singh, M. P., Janso, J. E., & Clardy, J. (2000b). Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Organic Letters, 2, 4047-4049.

    Article  CAS  Google Scholar 

  • Brady, S. F., Wagenaar, M. M., Singh, M. P., Janso, J. E., & Clardy, J. (2000a). The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Organic Letters, 2, 4043-4046.

    Article  CAS  Google Scholar 

  • Breen, J. P. (1994). Acremonium endophyte interactions with enhanced plant resistance to insects. Annual Review of Entomology, 39, 401-423.

    Article  Google Scholar 

  • Bush, L. P., Wilkinson, H. H., & Schardl, C. L. (1997). Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 114, 1-7.

    PubMed  CAS  Google Scholar 

  • Calhoun, L. A., Findlay, J. A., Miller, J. D. & Whitney, N. J. (1992). Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycological Research, 96, 281-286.

    Google Scholar 

  • Cao, L. X., You, J. L., & Zhou, S. N. (2002). Endophytic fungi from Musa acuminata leaves and roots in South China. World Journal of Microbiology and Biotechnology, 18, 169-171.

    Article  Google Scholar 

  • Chareprasert, S., Piapukiew, J., Thienhirun, S., Whalley, A. J. S., & Sihanonth, P. (2006). Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World Journal of Microbiology and Biotechnology, 22,481-486.

    Article  Google Scholar 

  • Christensen, M. J., Bennett, R. J., & Schmid, J. (2002). Growth of Epichloe/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycological Research, 106, 93-106.

    Article  Google Scholar 

  • Clay, K., & Cheplick, G. P. (1989). Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). Journal of Chemical Ecology, 15, 169-181.

    Article  CAS  Google Scholar 

  • Clay, K., Hardy, T. N., & Hammond, J. A. M. (1985). Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia, 66, 1-5.

    Article  Google Scholar 

  • Cole, R. J., Kirksey, J. W., Dorner, J. W., Wilson, D. N., Johnson, J. C., Johnson, J. A. N., et al. (1977). Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. Journal of Agricultural and Food Chemistry, 25, 826-830.

    Article  PubMed  CAS  Google Scholar 

  • Daisy, B. H., Strobel, G. A., Castillo, U., Ezra, D., Sears, J., Weaver, D. K., & Runyon, J. B. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737-3741.

    PubMed  CAS  Google Scholar 

  • Dingle, J., & McGee, P. A. (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycological Research, 107, 310-316.

    Article  PubMed  Google Scholar 

  • Eddleston, M., Karalliedde, L., Buckley, N., Fernando, R., Hutchinson, G., Isbister, G., et al. (2002). Pesticide poisoning in the developing world – a minimum pesticides list. Lancet, 360, 1163-1167.

    Article  PubMed  Google Scholar 

  • Elamo, P., Helander, M. L., Saloniemi, I. & Neuvonen, S. (1998). Interactions among endophytic fungi and a pathogenic rust fungus in birch leaves. http://www.bspp.org.uk/icpp98/2.9/5.html (accessed on 9 January, 2006).

    Google Scholar 

  • Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2, 149-160.

    Article  Google Scholar 

  • Faeth, S. H., & Fagan, W. F. (2002). Fungal endophytes: common host plant symbionts but uncommon mutualists. Integrative and Comparative Biology, 42, 360-368.

    Article  Google Scholar 

  • Findlay, J. A., Li, G., Miller, J. D., & Womiloju, T. O. (2003). Insect toxins from spruce endophytes. Canadian Journal of Chemistry, 81, 284-292.

    Article  CAS  Google Scholar 

  • Fisher, P. J., & Petrini, O. (1992). Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytologist, 120, 137-143.

    Article  Google Scholar 

  • Geris dos Santos, R. M., Rodrigues-Fo, E., Rocha, W. C., & Teixeira, M. F. S. (2003). Endophytic fungi from Melia azedarach. World Journal of Microbiology and Biotechnology, 19, 767-770.

    Article  Google Scholar 

  • Gurney, K. A., & Mantle, P. G. (1993). Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. isolated from perennial ryegrass. Journal of Natural Products, 56, 1194-1198.

    CAS  Google Scholar 

  • Hahn, H., Huth, W., Schoberlin, W., & Diepenbrock, W. (2003). Detection of endophytic fungi in Festuca sp. by means of tissue print immunoassay. Plant Breeding, 122, 217-222.

    Google Scholar 

  • Hallmann, J. & Sikora, R. A. (1996). Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. European Journal of Plant Pathology, 102, 155-162.

    Article  CAS  Google Scholar 

  • Hardy, T. N., Clay, K., & Hammond, J. A. M. (1985). Fall armyworm (Lepidoptera: Noctuidae): A laboratory bioassay and larval preference study for the fungal endophyte of perennial ryegrass. Journal of Economic Entomology, 78, 571-575.

    Google Scholar 

  • Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A., Tomer, D.P., et al. (2003). Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471-2476.

    Article  CAS  Google Scholar 

  • Hata, K., Atari, R., & Sone, K. (2002). Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience, 43, 369-373.

    Article  Google Scholar 

  • He, H., Yang, H. Y., Bigelis, R., Solum, E. H., Greenstein, M., & Carter, G. T. (2002). Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Letters, 43, 1633-1636.

    Article  CAS  Google Scholar 

  • Hensens, O. D., Ondeyka, J. G., Dombrowski, A. W., Ostlind, D. A., & Zink, D. L. (1999). Isolation and structure of Nodulosporic acid A1 and A2, novel insecticides from a Nodulosporium sp. Tetrahedron Letters, 40, 5455-5458.

    Article  CAS  Google Scholar 

  • Horn, W. S., Simmonds, M. S. J., Schwartz, R. E., & Blaney, W. M. (1995). Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron, 51, 3969.

    Article  CAS  Google Scholar 

  • Ji, L. L., Song, Y. C., & Tan, R. X. (2004). A potent feed preservative candidate produced by Calcarisporium sp., an endophyte residing in stargrass (Cynodon dactylon). Journal of Applied Microbiology, 96, 352-358.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. C., Dahlman, L. D., Siegel, M. R., Bush, L. P., Latch, G. C. M., Potter, D. A., & Varney, D. R. (1985). Insect feeding deterrents in endophyte-infected tall fescue. Applied and Environmental Microbiology, 49, 568-571.

    PubMed  Google Scholar 

  • Koshino, H., Togia, S., Terada, S. I., Yoshihara, T., Sakamura, S., Shimanuki, et al. (1989a). New fungitoxic sesquiterpenoids, chokols A-G, from stromata of Epichloe typhina and the absolute configuration of chokol. Agricultural and Biological Chemistry, 53, 789-796.

    CAS  Google Scholar 

  • Koshino, H., Yoshihara, T., Sakamura, S., Shimanuki, T., Sato, T., & Tajimi, A. (1989b). Novel C-11 epoxy fatty acid from stromata of Epichloe typhina on Phleum pratense. Agricultural and Biological Chemistry, 53, 2527-2528.

    CAS  Google Scholar 

  • Larran, S., Perelló, A., Simo, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) Leaves. World Journal of Microbiology and Biotechnology, 18, 683-686.

    Article  CAS  Google Scholar 

  • Larran, S., Monaco, C., & Alippi, H. E. (2001). Endophytic fungi in leaves of Lycopersicon esculentum Mill. World Journal of Microbiology and Biotechnology, 17, 181-184.

    Article  Google Scholar 

  • Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2006). The endophytic fungi from wheat (Triticum aestivum L.). World Journal of Microbiology and Biotechnology, 23, 565-572.

    Article  Google Scholar 

  • Li, J. Y., Strobel, G., Harper, J., Lobkovsky, E., & Clardy, J. (2000). Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Organic Letters, 2, 767-770.

    Article  CAS  Google Scholar 

  • Li, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57, 261-265.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, D. J., Fisher, P. J., & Sutton, B. C. (1996). Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia, 88, 733-738.

    Article  Google Scholar 

  • Lu, H., Xou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151, 67-73.

    Article  CAS  Google Scholar 

  • Mancini, F., Van Bruggen, A. H. C., Jiggins, J. L. S., Ambatipudi, A. C., & Murphy, H. (2005). Acute pesticide poisoning among female and male cotton growers in India. International Journal of Occupational and Environmental Health, 11, 221-232.

    PubMed  CAS  Google Scholar 

  • Marshall, D., Tunali, B., & Nelson, L. R. (1999). Occurrence of fungal endophytes in species of wild Triticum. Crop Science, 39, 1507-1512.

    Google Scholar 

  • Morita, S., Azuma, M., Aoba, T., Satou, H., Narisawa, K., & Hashiba, T. (2003). Induced systemic resistance of Chinese cabbage to bacterial leaf spot and Alternaria leaf spot by the root endophytic fungus, Heteroconium chaetospira. Journal of General Plant Pathology, 69, 71-75.

    Article  Google Scholar 

  • Narisawa, K., Kawamata, H., Currah, R. S., & Hashiba, T. (2002). Suppression of Verticillium wilt in eggplant by some fungal root endophyte. European Journal of Plant Pathology, 108, 103-109.

    Article  Google Scholar 

  • Ondeyka, J. G., Helms, G. L., Hensens, O. D., Goetz, M. A., Zink, D. L., Tsipouras, A., et al. (1997). Nodulisporic acid A, a novel and potent insecticide from a Nodulosporium sp. isolation, structure determination, and chemical transformation. Journal of the American Chemical Society, 119, 8809-8816.

    Article  CAS  Google Scholar 

  • Park, J. H., Choi, G. J., Lee, H. B., Kim, K. M., Jung, H. S., Lee, S. W., et al. (2005). Griseofulvin from Xylaria sp. Strain F0010, and endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. Journal of Microbiology and Biotechnology, 15, 112-117.

    CAS  Google Scholar 

  • Pelaez, F., Cabello, A., Platas, G., Diez, M. T., del Val, A. G., Basilio, A., et al. (2000). The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Systematic and Applied Microbiology, 23, 333-343.

    PubMed  CAS  Google Scholar 

  • Pirttila, A. M., Pospiech, H., Laukkanen, H., Myllyla, R., & Hohtola, A. (2003). Two endophytic fungi in different tissues of scots pine buds (Pinus sylvestris L.). Microbial Ecology, 45, 53-62.

    Article  PubMed  CAS  Google Scholar 

  • Quesada, M. E., Landa, B. B., Muñoz-Ledesma, J., Jiménez-Diaz, R. M., & Santiago-Alvarez, C. (2006). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161, 323-329.

    Article  Google Scholar 

  • Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science, 298, 1581-1582.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, D. D., & Gaynor, D. L. (1986). Isolation of feeding deterrents against argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. Journal of Chemical Ecology, 12, 647-658.

    Article  CAS  Google Scholar 

  • Saikkonen, K., Wa, L. P., Helander, M. & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9, 275-280.

    Article  PubMed  CAS  Google Scholar 

  • Schardl, C. L., & Phillips, T. D. (1997). Protective grass endophytes: where are they from and where are they going? Plant Disease, 81, 430-438.

    Article  Google Scholar 

  • Schardl, C. L., Leuchtmann, A., Chung, K. R., Penny, D., & Siegel, M. R. (1997). Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Molecular Biology and Evolution, 14, 133-143.

    CAS  Google Scholar 

  • Schmeda-Hirschmann, G., Hormazabal, E., Astudillo, L., Rodriguez, J. L., & Theoduloz, C. (2005). Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World Journal of Microbiology and Biotechnology, 21, 27-32.

    Article  CAS  Google Scholar 

  • Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 996-1004.

    Article  CAS  Google Scholar 

  • Schulz, B., Rommert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism? Mycological Research, 103, 1275-1283.

    Article  Google Scholar 

  • Schulz, B., Sucker, J., Aust, H. J., Krohen, K., Ludewig, K., Jones, P. G. & Doring, D. (1995). Biologically active secondary metabolites of endophytic Pezicula sp. Mycological Research, 99, 1007-1015.

    Article  CAS  Google Scholar 

  • Schwarz, M., Koepcke, B., Weber, R. W. S., Sterner, O., & Anke, H. (2004). 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry, 65, 2239-2245.

    Article  PubMed  CAS  Google Scholar 

  • Sette, L. D., Passarini, M. R. Z., Delarmelina, C., Salati, F., & Duarte, M. C. T. (2006). Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World Journal of Microbiology and Biotechnology, 22, 1185-1195.

    Article  CAS  Google Scholar 

  • Siegel, M. R., Latch, G. C. M., Bush, L. P., Fannin, N. F., Rowan, D. D., Tapper, B. A., et al. (1990). Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. Journal of Chemical Ecology, 16, 3301-3315.

    Article  CAS  Google Scholar 

  • Song, Y. C., Li, H., Ye, Y. H., Shan, C. Y., Yang, Y. M., & Tan, R. X. (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiology Letters, 241, 67-72.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasrao, C. H., Venkateswarlu, V., Surender, T., Eddleston, M., & Buckley, N. A. (2005). Pesticide poisoning in south India: opportunities for prevention and improved medical management. Tropical Medicine and International Health, 10, 581-588.

    Article  Google Scholar 

  • Strobel, G. A. (2006). Muscodor albus and its biological promise. Journal of Industrial Microbiology and Biotechnology, 33, 514-522.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, G. A., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscador albus, a novel endophytic fungus. Microbiology, 147, 2943-2950.

    PubMed  CAS  Google Scholar 

  • Strobel, G. A., Miller, R. V., Martinez-Miller, C., Condron, M. M., Teplow, D. B., & Hess, W. M. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145, 1919-1926.

    PubMed  CAS  Google Scholar 

  • Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural Products Reports, 18, 448-459.

    Article  CAS  Google Scholar 

  • Tejesvi, M. V., Mahesh, B., Nalini, M. S., Prakash, H. S., Kini. K. R., Subbiah, V., & Shetty, H. S. (2005). Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World Journal of Microbiology and Biotechnology, 21, 1535-1540.

    Article  Google Scholar 

  • Tian, X. L., Cao, L. X., Tan, H. M., Zeng, Q. G., Jia, Y. Y., Han, W. Q. & Zhou, S. N. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World Journal of Microbiology and Biotechnology, 20, 303-309.

    Article  Google Scholar 

  • Vurro, M., Evidente, A., Andolfi, A., Zonuo, M. C., Giordano, F., & Motta, A. (1998). Brefeldin A and α,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Science, 138, 67-79 .

    Article  CAS  Google Scholar 

  • Wagenaar, M. M., Corwin, J., Strobel, G., & Clardy, J. (2000). Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. Journal of Natural Products, 63, 1692-1695.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H., & Song, Y. C. (2006). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23, 79-83.

    Article  CAS  Google Scholar 

  • Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y., & Su, W. (2002). Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunology and Medical Microbiology, 34, 51-57.

    Article  PubMed  CAS  Google Scholar 

  • Webber, J. (1981). A natural control of dutch elm disease. Nature, 292, 449.

    Google Scholar 

  • West, C. P. (1994). Physiology and drought tolerance of endophyte-infected grasses. In: Bacon C. W. & White J. F. (Eds), Biotechnology of endophytic fungi of grasses (pp. 87-99). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Wicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycological Research, 109, 610-618.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. D., Clement, S. L., & Kaiser, W. J. (1991). Survey and detection of endophytic fungi in Lolium germplasm by direct staining and aphid assays. Plant Disease, 75, 169-173.

    Google Scholar 

  • Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N., & Meevootisom, V. (2004). Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World Journal of Microbiology and Biotechnology, 20, 265-272.

    Article  Google Scholar 

  • Xu, Q., Wang, J., & Huang, Y. (2004). Metabolites from mangrove endophytic fungus Dothiorellasp. Acta Oceanologica Sinica, 23, 541-547

    CAS  Google Scholar 

  • Yates, I. E., Widstrom, N. W., Bacon, C. W., Glenn, A., Hinton, D. M., Sparks, D., & Jaworski, A. J. (2005). Field performance of maize grown from Fusarium verticillioides-inoculated seed. Mycopathologia, 159, 65-73

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. W., Nagasawa, H., Nagura, F., Mohamad, S. B., Uto, Y., Okura, K., & Hori, H. (2000). Elucidation of strict structural requirements of Brefeldin A as an inducer of differentiation and apoptosis. Bioorganic and Medicinal Chemistry, 8, 455-463.

    Article  PubMed  CAS  Google Scholar 

  • Zou, W. X., Meng, J. C., Lu, H., Chen, G. X., Shi, G. X., Zhang, T. Y., & Tan, R. X. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of Natural Products, 63, 1529-1530.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kumar, S., Kaushik, N., Edrada-Ebel, R., Ebel, R., Proksch, P. (2008). Endophytic Fungi for Pest and Disease Management. In: Ciancio, A., Mukerji, K. (eds) Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. Integrated Management of Plant Pests and Diseases, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8571-0_17

Download citation

Publish with us

Policies and ethics