Skip to main content

Part of the book series: Heat Shock Proteins ((HESP,volume 3))

The protective effects of prior heat shock against cell death have been well established. Comparatively little attention has been given to the determination of whether this type of ‘preconditioning’ treatment protects critical neural processes such as synaptic function from subsequent stress. Synapses are key sites of information transfer in the nervous system and their functionality must be preserved under stressful conditions to prevent communication breakdown. Synaptic connections are vulnerable regions of neurons involved in the physiological process of ‘neurotransmission’ that link neurons into functional networks. The combined application of molecular biology and neurophysiology techniques has demonstrated that prior heat shock protects neurotransmission and synapses are able to function under conditions that would normally be disruptive. Selective overexpression of Hsp70 enhances the level of synaptic protection. Biochemical isolation of synaptic fractions and immunocytochemistry has localized a set of constitutive and stress-inducible heat shock proteins to components of the synapse. Constitutively expressed Hsc70 protein is enriched in neural tissue compared to non-neural tissues. Following hyperthermia, an enhancement of Hsc70 is apparent in synapse-rich areas of the brain in concert with the appearance of stress-inducible Hsp70, Hsp32 and Hsp27 at synapses. Induction of the heat shock response protects the nervous system at the functional level and permits neurotransmission events to proceed at synapses during stressful conditions. Synaptic function is disrupted during the progression of neurodegenerative diseases and upregulation of heat shock proteins could mitigate that dysfunction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, A. (2002) Neurologists strike gold in drug screen effort. Nature 417, 109.

    PubMed  CAS  Google Scholar 

  • Barbe, M.F., Tytell, M., Gower, D.J. and Welch, W.J. (1988) Hyperthermia protects against light damage in the rat retina. Science 241, 1817–1820.

    PubMed  CAS  Google Scholar 

  • Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., Strong, M.J. and Durham, H.D. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 5789–5798.

    PubMed  CAS  Google Scholar 

  • Bechtold, D.A. and Brown, I.R. (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain Res. Mol. Brain Res. 7, 309–320.

    Google Scholar 

  • Bechtold, D.A., Rush, S.J. and Brown, I.R. (2000) Localization of the heat shock protein Hsp70 to the synapse following hyperthermic stress in the brain. J. Neurochem. 74, 641–646.

    PubMed  CAS  Google Scholar 

  • Belay, H.T. and Brown, I.R. (2003) Spatial analysis of cell death and stress protein Hsp70 induction in brain, thymus and bone marrow of the hyperthermic rat. Cell Stress Chaperones 8, 395–404.

    PubMed  CAS  Google Scholar 

  • Belay, H.T. and Brown, I.R. (2006) Cell death and expression of heat shock (stress) protein Hsc70 in the hyperthermic rat brain. J. Neurochem. 97 Suppl. 1, 116–119.

    PubMed  CAS  Google Scholar 

  • Bronk, P., Nie, Z., Klose, M.K., Dawson-Scully, K., Zhang, J., Robertson, R.M., Atwood, H.L. and Zinsmaier, K.E. (2005) The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J. Neurosci. 25, 2204–2214.

    PubMed  CAS  Google Scholar 

  • Bronk, P., Wenniger, J.J., Dawson-Scully, K., Guo, X., Hong, S., Atwood, H.L. and Zinsmaier, K.E. (2001) Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron 30, 475–488.

    PubMed  CAS  Google Scholar 

  • Brown, I.R. (1994) Induction of heat shock genes in the mammalian brain by hyperthermia and tissue injury. In Heat shock proteins in the nervous system. J. Mayer and I.R. Brown, eds. Academic Press, London, pp. 31–53.

    Google Scholar 

  • Brown, I.R. (2007) Heat shock proteins and neurodegenerative diseases. In Cell stress proteins. S.K. Calderwood, ed. Springer Science + Business Media LLC, New York, pp. 396–421.

    Google Scholar 

  • Brown, D.A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136.

    PubMed  CAS  Google Scholar 

  • Brown, I.R. and Sharp, F.R. (1999) The cellular stress gene response in brain. In Stress proteins. Handbook of experimental pharmacology, Volume 136. D.S. Latchmann, ed. Springer-Verlag, Heidelberg, pp. 243–263.

    Google Scholar 

  • Chamberlain, L.H. and Burgoyne, R.D. (2000) Cysteine-string protein: the chaperone at the synapse. J. Neurochem. 74, 1781–1789.

    PubMed  CAS  Google Scholar 

  • Chen, S. and Brown, I.R. (2007a) Translocation of constitutively expressed heat shock protein Hsc70 to synapse-enriched areas of the cerebral cortex after hyperthermic stress. J. Neurosci. Res. 85, 402–409.

    CAS  Google Scholar 

  • Chen, S. and Brown, I.R. (2007b) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 1, 51–58.

    Google Scholar 

  • Chen, S., Dawa, D., Besshoh, S., Gurd, J.W. and Brown, I.R. (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J. Neurosci. Res. 81, 522–529.

    PubMed  CAS  Google Scholar 

  • Chow, A.M. and Brown, I.R. (2007) Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12, 237–244.

    PubMed  CAS  Google Scholar 

  • Cleren, C., Calingasan, N.Y., Chen, J. and Beal, M.F. (2005) Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxity. J. Neurochem. 94, 995–1004.

    PubMed  CAS  Google Scholar 

  • Cooper, R.L., Stewart, B.A., Wojtowicz, J.M., Wang, S. and Atwood, H.L. (1995) Quantal measurement and analysis methods compared for crayfish and Drosophila neuromuscular junctions and rat hippocampus. J. Neurosci. Methods 61, 67–78.

    PubMed  CAS  Google Scholar 

  • Cummings, D.M., Milnerwood, A.J., Dallerac, G.M., Vatsavayai, S.C., Hirst, M.C. and Murphy, K.P. (2007) Abnormal cortical synaptic plasticity in a mouse model of Huntington’s disease. Brain Res. Bull. 72, 103–107.

    PubMed  CAS  Google Scholar 

  • Dawson-Scully, K., Lin, Y., Imad, M., Zhang, J., Marin, L., Home, J.A., Meinertzhagen, I.A., Karunanithi, S., Zinsmaier, K.E. and Atwood, H.L. (2007) Morphological and functional effects of altered cysteine-string protein at the Drosophila larval neuromuscular junction. Synapse 61, 1–16.

    PubMed  CAS  Google Scholar 

  • diIorio, P.J., Holsinger, K., Schultz, R.J. and Hightower, L.E. (1996) Quantitative evidence that both Hsc70 and Hsp70 contribute to thermal adaptation in hybrids of the livebearing fishes Poeciliopsis. Cell Stress Chaperones 1, 139–147.

    PubMed  CAS  Google Scholar 

  • Dwyer, D.S., Liu, Y., Miao, S. and Bradley, R.J. (1996) Neuronal differentiation in PC12 cells is accompanied by diminished inducibility of Hsp70 and Hsp60 in response to heat and ethanol. Neurochem. Res. 21, 659–666.

    PubMed  CAS  Google Scholar 

  • Fan, C.Y., Lee, S. and Cyr, D.M. (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8, 309–316.

    PubMed  CAS  Google Scholar 

  • Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A. and Lindquist, S.L. (1996) Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol. 199, 1837–1844.

    PubMed  CAS  Google Scholar 

  • Fei, G., Guo, C., Sun, H-S. and Feng, Z-P. (2007) Chronic hypoxia stress-induced differential modulation of heat shock protein 70 and presynaptic proteins. J. Neurochem. 100, 50–61.

    PubMed  CAS  Google Scholar 

  • Forman, M.S., Trojanowski, J.Q. and Lee, V.M. (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055–1063.

    PubMed  CAS  Google Scholar 

  • Foster, J.A. and Brown, I.R. (1996) Intracellular localization of heat shock mRNAs (hsc70 and hsp70) to neural cell bodies and processes in the control and hyperthermic rabbit brain. J. Neurosci. Res. 46, 652–665.

    PubMed  CAS  Google Scholar 

  • Foster, J.A. and Brown, I.R. (1997) Differential induction of heat shock mRNA in oligodendrocytes, microglia, and astrocytes following hyperthermia. Brain Res. Mol. Brain Res. 45, 207–218.

    PubMed  CAS  Google Scholar 

  • Foster, J.A., Rush, S.J. and Brown, I.R. (1995) Localization of constitutive and hyperthermia-inducible heat shock mRNAs (hsc70 and hsp70) in the rabbit cerebellum brainstem by non-radioactive in situ hybridization. J. Neurosci. Res. 41, 603–612.

    PubMed  CAS  Google Scholar 

  • Franklin, T.B., Krueger-Naug, A.M., Clarke, D.B., Arrigo, A.P. and Currie, R.W. (2005) The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int. J. Hyperthermia 21, 379–392.

    PubMed  CAS  Google Scholar 

  • Guzhova, I., Kislyakova, K., Moskoliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M. and Margulis, B. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 914, 66–73.

    PubMed  CAS  Google Scholar 

  • Haass, C. and Selkoe, D.J. (2007) Soluble oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.

    PubMed  CAS  Google Scholar 

  • Hatayama, T., Takahashi, H. and Yamagishi, N. (1997) Reduced induction of HSP70 in PC12 cells during neuronal differentiation. J. Biochem. (Tokyo) 122, 904–1010.

    CAS  Google Scholar 

  • Heemskerk, J., Tobin, A.J. and Bain, L.J. (2002) Teaching old drugs new tricks. Trends Neurosci. 25, 494–496.

    PubMed  Google Scholar 

  • Hering, H., Lin, C.C. and Sheng, M. (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271.

    PubMed  CAS  Google Scholar 

  • Hightower, L., Sadis, S. and Takenaka, I. (1994) Interaction of vertebrate Hsc70 and Hsp70 with unfolded proteins and peptides. In The biology of heat shock proteins and molecular chaperones. R.I. Morimoto, A. Tissieres, and C. Georgopoulos eds. Cold Spring Harbor Laboratory Press, New York, pp. 179–208.

    Google Scholar 

  • Hirokawa, N. (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J. Neurosci. 26, 7139–7142.

    PubMed  CAS  Google Scholar 

  • Houenou, L.J., Li, L., Lei, M., Kent, C.R. and Tytell, M. (1996) Exogenous heat shock cognate protein Hsc70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones 1, 161–166.

    PubMed  CAS  Google Scholar 

  • Jana, N.R., Tanaka, M., Wang, G. and Nukina, N. (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009–2018.

    PubMed  CAS  Google Scholar 

  • Kalmar, B., Kieran, D. and Greensmith, L. (2005) Molecular chaperones as therapeutic targets in amyotrophic lateral sclerosis. Biochem. Soc. Trans. 33, 551–552.

    PubMed  CAS  Google Scholar 

  • Kang, H. and Schuman, E.M. (1996) A requirement for local protein synthesis in neurotrophin-induced synaptic plasticity. Science 273, 1402–1406.

    PubMed  CAS  Google Scholar 

  • Karunanithi, S., Barclay, J.W., Brown, I.R., Robertson, R.M. and Atwood, H.L. (2002) Enhancement of presynaptic performance in transgenic Drosophila overexpressing heat shock protein Hsp70. Synapse 44, 8–14.

    PubMed  CAS  Google Scholar 

  • Karunanithi, S., Barclay, J.W., Robertson, R.M., Brown, I.R. and Atwood, H.L. (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J. Neurosci. 19, 4360–4369.

    PubMed  CAS  Google Scholar 

  • Kelty, J.D., Noseworthy, P.A., Feder, M.E., Robertson, R.M. and Ramirez, J.M. (2002) Thermal pre-conditioning and heat shock protein 72 preserves synaptic transmission during thermal stress. J. Neurosci. 22, RC193, 1–6.

    Google Scholar 

  • Keshishian, H., Brodie, K., Chiba, A. and Bate, M. (1996) The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu. Rev. Neurosci. 19, 545–575.

    PubMed  CAS  Google Scholar 

  • Khan, V.R. and Brown, I.R. (2002) The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 7, 73–90.

    PubMed  Google Scholar 

  • Kiaei, M., Kipiani, K., Petri, S., Chen, J., Calingasan, N.Y. and Beal, M.F. (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis. 2, 246–254.

    PubMed  CAS  Google Scholar 

  • Kieran, D., Kalmar, B., Dick, J.R., Riddoch-Contreras, J., Burnstock, G. and Greensmith, L. (2004) Treatment with arimoclomol, a co-inducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 10, 402–405.

    PubMed  CAS  Google Scholar 

  • Kohan, S.A., Pescarori, M., Breccha, N.C., Mastrogiacomo, A., Umbach, J.A. and Gundersen, C.B. (1995) Cysteine-string protein immunoreactivity in the nervous system and adrenal gland of the rat. J. Neurosci. 15, 6230–6238.

    PubMed  CAS  Google Scholar 

  • Lee, J.-A., Lim, C.-S., Lee, S.-H., Kim, H., Nukina, N. and Kaang, B.-K. (2003) Aggregate formation and the impairment of long-term synaptic facilitation by ectopic expression of mutant huntingtin in Aplysia neurons. J. Neurochem. 85, 160–169.

    PubMed  CAS  Google Scholar 

  • Lepock, J.R. (2005) How do cells respond to their thermal environment? Int. J. Hyperthermia 21, 681–687.

    PubMed  CAS  Google Scholar 

  • Leung, S.M., Senisterra, G., Ritchie, K.P., Sadis, S.E., Lepock, J.R. and Hightower, L.E. (1996). Thermal activation of the bovine Hsc70 molecular chaperone at physiological temperatures: physical evidence of a molecular thermometer. Cell Stress Chaperones 1, 78–89.

    PubMed  CAS  Google Scholar 

  • Li, H., Li, S.-H., Johnston, H., Shelbourne, P.F. and Li, X.-J. (2000) Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat. Genet. 25, 385–389.

    PubMed  CAS  Google Scholar 

  • Li, J.Y., Plomann, M. and Brundin, P. (2003) Huntington’s disease: a synaptopathy? Trends Mol. Med. 9, 414–420.

    PubMed  CAS  Google Scholar 

  • Maekawa, S., Iino, S. and Miyata, S. (2003) Molecular characterization of detergent-insoluble cholesterol-rich membrane microdomain (raft) of central nervous system. Biochim. Biophys. Acta 1610, 216–270.

    Google Scholar 

  • Manzerra, P. and Brown, I.R. (1996) The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp. Cell Res. 229, 35–47.

    PubMed  CAS  Google Scholar 

  • Manzerra, P., Rush, S.J. and Brown, I.R. (1993) Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia. J. Neurosci. Res. 36, 480–490.

    PubMed  CAS  Google Scholar 

  • Manzerra, P., Rush, S.J. and Brown, I.R. (1997) Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. J. Cell. Physiol. 170, 130–137.

    PubMed  CAS  Google Scholar 

  • Marcuccilli, C.J., Mathur, S.K., Morimoto, R.I. and Miller, R.J. (1996) Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J. Neurosci. 16, 478–485.

    PubMed  CAS  Google Scholar 

  • Martin, K.C. and Zukin, R.S. (2006) RNA trafficking and local protein synthesis in dendrites: an overview. J. Neurosci. 26, 7131–7134.

    PubMed  CAS  Google Scholar 

  • Meriin, A.B. and Sherman, M.Y. (2005) Role of molecular chaperones in neurodegenerative disorders. Int. J. Hyperthermia 21, 403–419.

    PubMed  CAS  Google Scholar 

  • Moccia, R., Chen, D., Lyles, V., Kapuya, E.E., Kalachikow, S., Spahn, C.M., Frank, J., Kandel, E.R., Barad, M. and Martin, M.C. (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J. Neurosci. 23, 9409–9417.

    PubMed  CAS  Google Scholar 

  • Morimoto, R.I., Kline, M.P., Bimston, D.N. and Cotto, J.J. (1997) The heat shock response: regulation and function of heat shock proteins and molecular chaperones. Essays Biochem. 32, 17–29.

    PubMed  CAS  Google Scholar 

  • Muchowski, P.J. and Wacker, J.L. (2005) Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22.

    PubMed  CAS  Google Scholar 

  • Neal, S.J., Karunanithi, S., Best, A., So., A.K., Tanguay, R.M., Atwood, H.L. and Westwood, J.T. (2006) Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol. Genomics 25, 493–501.

    PubMed  CAS  Google Scholar 

  • Noonan, E.J., Place, R.F., Rasoulpour, R.J., Giardina, C. and Hightower, L.E. (2007) Cell number-dependent regulation of Hsp70B’ expression: evidence of an extracellular regulator. J. Cell. Physiol. 210, 201–211.

    PubMed  CAS  Google Scholar 

  • Ohtsuka, K. and Suzuki, T. (2000) Roles of molecular chaperones in the nervous system. Brain Res. Bull. 53, 141–146.

    PubMed  CAS  Google Scholar 

  • Parsell, D.A. and Lindquist, S. (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496.

    PubMed  CAS  Google Scholar 

  • Parsian, A.J., Sheren, J.E., Tao, T.Y., Goswani, P.C., Malyapa, R., Van Rheeden, R., Watson, M.S. and Hunt, C.R. (2000) The human Hsp70B gene at the HSPA7 locus on chromosome 1 is transcribed but non-functional. Biochim. Biophys. Acta 1494, 201–205.

    PubMed  CAS  Google Scholar 

  • Patel, Y.J., Payne Smith, M.D., de Belleroche, J. and Latchman, D.S. (2005) Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Brain Res. Mol. Brain Res. 134, 256–274.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, B.E. and Huber, K.M. (2006) Current advances in local protein synthesis and synaptic plasticity. J. Neurosci. 26, 7147–7150.

    PubMed  CAS  Google Scholar 

  • Pinna, G.F., Fiorucci, J.M., Reimund, J.M., Taquet, N., Arondel, Y. and Muller, C.D. (2004) Celastrol inhibits pro-inflammatory cytokine secretion in Crohn’s disease biopsies. Biochem. Biophys. Res. Commun. 322, 778–786.

    PubMed  CAS  Google Scholar 

  • Rao, A. and Steward, O. (1991) Evidence that protein constituents of postsynaptic membrane are locally synthesized: analysis of proteins synthesized within synaptosomes. J. Neurosci. 11, 2881–2895.

    PubMed  CAS  Google Scholar 

  • Ritossa, F.M. (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18, 571–573.

    CAS  Google Scholar 

  • Robinson, M.C., Tidwell, J.L., Gould, T., Taylor, A.R., Newbern, J.M., Graves, J., Tytell, M. and Milligan, C.E. (2005) Extracellular heat shock protein 70: a critical component for motorneuron survival. J. Neurosci. 25, 9735–9745.

    PubMed  CAS  Google Scholar 

  • Ross, C.A. and Poirier, M.A. (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17.

    Google Scholar 

  • Schuman, E.M., Dynes, J.L. and Steward, O. (2006) Synaptic regulation of translation of dendritic mRNAs. J. Neurosci. 26, 7143–7146.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (2004). Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 6, 1054–1061.

    PubMed  CAS  Google Scholar 

  • Sherman, M.Y. and Goldberg, A.L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32.

    PubMed  CAS  Google Scholar 

  • Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    PubMed  CAS  Google Scholar 

  • Smith, R., Brundin, P. and Li, J.-Y. (2005a) Synaptic dysfunction in Hungtington’s disease: a new perspective. Cell. Mol. Life Sci. 62, 1901–1912.

    CAS  Google Scholar 

  • Smith, R., Petersen, A., Bates, G.P., Brundin, P. and Li, J.Y. (2005b) Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington’s disease, possible culprit in synaptic dysfunction. Neurobiol. Dis. 20, 673–684.

    CAS  Google Scholar 

  • Steward, O. and Levy, W.B. (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291.

    PubMed  CAS  Google Scholar 

  • Stewart, B.A., Schuster, C.M., Goodman, C.S. and Atwood, H.L. (1996) Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. J. Neurosci. 16, 3877–3886.

    PubMed  CAS  Google Scholar 

  • Sung, Y., Weiler, I.J., Greenough, W.T. and Denman, R.B. (2004) Selectively enriched mRNAs in rat synaptoneurosomes. Brain Res. Mol. Brain Res. 126, 81–87.

    PubMed  CAS  Google Scholar 

  • Sutton, M.A. and Schuman, E.M. (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58.

    PubMed  CAS  Google Scholar 

  • Suzuki, T. (2002) Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. Neurosci. Res. 44, 1–9.

    PubMed  Google Scholar 

  • Suzuki, T., Usuda, N., Maurata, S., Nakazawa, A., Ohtsuka, K. and Takagi, H. (1999) Presence of molecular chaperones, heat shock cognate (Hsc) 70 and heat shock proteins (Hsp) 40, in the postsynaptic structures of rat brain. Brain Res. 816, 99–110.

    PubMed  CAS  Google Scholar 

  • Tao, X., Younger, J., Fan, F.Z., Wang, B. and Lipsky, P.E. (2002) Benefit of an extract of Tripterygium wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum. 46, 1735–1743.

    PubMed  Google Scholar 

  • Tidwell, J.L., Houenou, L.J. and Tytell, M. (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9, 88–98.

    PubMed  CAS  Google Scholar 

  • Tissieres, A., Mitchell, H.K. and Tracy, U.M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389–398.

    PubMed  CAS  Google Scholar 

  • Tobaben, S., Thakur, P., Fernandez-Chacon, R., Sudhof, T.C., Rettig, J. and Stahl, B. (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31, 987–999.

    PubMed  CAS  Google Scholar 

  • Torre, E.R. and Steward, O. (1992) Demonstration of local protein synthesis within dendrites using a cell culture system that permits the isolation of living axons and dendrites from their cell bodies. J. Neurosci. 12, 762–772.

    PubMed  CAS  Google Scholar 

  • Tytell, M. (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int. J. Hyperthermia 21, 445–455.

    PubMed  CAS  Google Scholar 

  • Tytell, M., Barbe, M.F. and Brown, I.R. (1993). Stress (heat shock) protein accumulation in the central nervous system- its relationship to cell stress and damage. In Neural injury and regeneration. F.J. Sneil, ed. Raven Press, New York, pp. 293–303.

    Google Scholar 

  • Tytell, M., Greenberg, S.G. and Lasek, R.J. (1986) Heat shock-like protein is transferred from glia to axon. Brain Res. 363, 161–164.

    PubMed  CAS  Google Scholar 

  • Walsh, D.A., Klein, N.W., Hightower, L.E. and Edwards, M.J. (1987) Heat shock and thermotolerance during early rat embryo development. Teratology 36, 181–191.

    PubMed  CAS  Google Scholar 

  • Walsh, D.A., Li, K., Speirs, J., Crowther, C.E. and Edwards, M.J. (1989) Regulation of the inducible heat shock 71 genes in early neural development of cultured rat embryos. Teratology 40, 321–334.

    PubMed  CAS  Google Scholar 

  • Wang, J., Gines, S., MacDonald, M.E. and Gusella, J.F. (2005) Reversal of a full-length mutant huntingtin neuronal phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci. 6, 1.

    PubMed  Google Scholar 

  • Weiler, I.J. and Greenough, W.T. (1991) Potassium ion stimulation triggers protein translation in synaptoneurosomal polyribosomes. Mol. Cell. Neurosci. 2, 305–314.

    CAS  Google Scholar 

  • Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., et al. (2004) Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279, 56053–56060.

    PubMed  CAS  Google Scholar 

  • Westerheide, S.D. and Morimoto, R.I. (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280, 33097–33100.

    PubMed  CAS  Google Scholar 

  • Xiao, C., Mileva-Seitz, V., Seroude, L. and Robertson, R.M. (2007) Targeting HSP70 to motoneurons protects locomotor activity from hyperthermia in Drosophila. Dev. Neurobiol. 67, 438–455.

    PubMed  CAS  Google Scholar 

  • Yenari, M.A. (2002) Heat shock proteins and neuroprotection. Adv. Exp. Med. Biol. 513, 281–299.

    PubMed  CAS  Google Scholar 

  • Yu, Q., Kent, C.R. and Tytell, M. (2001) Retinal uptake of intravitreally injected Hsc/Hsp70 and its effect on susceptibility to light damage. Mol. Vision 7, 48–56.

    CAS  Google Scholar 

  • Zhong, J., Zhang, T. and Bloch, L.M. (2006) Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci. 7, 17.

    PubMed  Google Scholar 

  • Zinsmaier, K.E. and Bronk, P. (2001) Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem. Pharm. 62, 1–11.

    PubMed  CAS  Google Scholar 

  • Zourlidou, A., Gidalevitz, T., Kristiansen, Landles, C., Woodman, B., Wells, D.J., Latchman, D.S., de Bellereche, J., Tabrizi, S.J., Morimoto, R.I. and Bates, G.P. (2007) Hsp27 overexpression in the R6/2 mouse model of Huntington’s disease: chronic neurodegeneration does not induce Hsp27 activation. Hum. Mol. Gen. 16, 1078–1090.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brown, I.R. (2008). Heat Shock Proteins at the Synapse: Implications for Functional Protection of the Nervous System. In: Asea, A.A., Brown, I.R. (eds) Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection. Heat Shock Proteins, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8231-3_12

Download citation

Publish with us

Policies and ethics