Skip to main content

Signal Transduction Pathways Involved in Mechanotransduction in Osteoblastic and Mesenchymal Stem Cells

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

Abstract

Bone remodeling, a process in adults that maintains bone mass through the activity of osteoblasts and osteoclasts, is regulated by mechanical forces. Mechanical loading promotes osteoblast function by increasing proliferation and differentiation of these cells. The cellular responses underlying this mechanism are termed mechanotransduction. Mechanotransduction involves various signal transduction pathways, including the activation of ion channels and other mechanoreceptors in the membrane of the bone cell, resulting in gene regulation in the nucleus. Identification and functional characterization of the mechanotransduction components may improve bone tissue engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ (1999) Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol 276: E171–178

    PubMed  CAS  Google Scholar 

  • Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L (1999) Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem 76: 217–230

    Article  PubMed  CAS  Google Scholar 

  • Bakker AD, Joldersma M, Klein-Nulend J, Burger EH (2003) Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am J Physiol Endocrinol Metab 285: E608–613

    PubMed  CAS  Google Scholar 

  • Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH (2005) Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int 16: 983–989

    Article  PubMed  CAS  Google Scholar 

  • Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 34: 671–677

    Article  PubMed  CAS  Google Scholar 

  • Basso N, Heersche JN (2006) Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 39: 807–814

    Article  PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulen J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulend J, Smit TH (2003) Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon–a proposal. J Biomech 36: 1453–1459

    Article  PubMed  Google Scholar 

  • Cartmell SH, Porter BD, Garcia AJ, Guldberg RE (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9: 1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87: 2870–2884

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Macica CM, Ng KW, Broadus AE (2005) Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20: 1454–1461

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX (2001) PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142: 3464–3473

    Article  PubMed  CAS  Google Scholar 

  • Cheng MZ, Rawlinson SC, Pitsillides AA, Zaman G, Mohan S, Baylink DJ, Lanyon LE (2002) Human osteoblasts’ proliferative responses to strain and 17beta-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor I. J Bone Miner Res 17: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX (2003) Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278: 43146–43156

    Article  PubMed  CAS  Google Scholar 

  • Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16: 3100–3106

    Article  PubMed  CAS  Google Scholar 

  • Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103: 2488–2493

    Article  PubMed  CAS  Google Scholar 

  • Davidson RM, Tatakis DW, Auerbach AL (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416: 646–651

    Article  PubMed  CAS  Google Scholar 

  • Di Palma F, Guignandon A, Chamson A, Lafage-Proust MH, Laroche N, Peyroche S, Vico L, Rattner A (2005) Modulation of the responses of human osteoblast-like cells to physiologic mechanical strains by biomaterial surfaces. Biomaterials 26: 4249–4257

    Article  PubMed  CAS  Google Scholar 

  • Duncan RL, Kizer N, Barry EL, Friedman PA, Hruska KA (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci USA 93: 1864–1869

    Article  PubMed  CAS  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57: 344–358

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13: 688–700

    Article  PubMed  CAS  Google Scholar 

  • El Haj AJ, Wood MA, Thomas P, Yang Y (2005) Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol Biol (Paris) 53: 581–589

    Google Scholar 

  • Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J (2006) Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207: 454–460

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145: 751–759

    Article  PubMed  CAS  Google Scholar 

  • Ferraro JT, Daneshmand M, Bizios R, Rizzo V (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286: C831–839

    Article  PubMed  CAS  Google Scholar 

  • Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Sogo N, Nagasawa S, Shimizu T, Umemura Y (2003) High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. J Appl Physiol 95: 1032–1037

    PubMed  Google Scholar 

  • Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004: RE12

    Article  PubMed  Google Scholar 

  • Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Iqbal J, Zaidi M (2005) Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 328: 751–755

    Article  PubMed  CAS  Google Scholar 

  • Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31: 186–194

    Article  PubMed  CAS  Google Scholar 

  • Jessop HL, Suswillo RF, Rawlinson SC, Zaman G, Lee K, Das-Gupta V, Pitsillides AA, Lanyon LE (2004) Osteoblast-like cells from estrogen receptor alpha knockout mice have deficient responses to mechanical strain. J Bone Miner Res 19: 938–946

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17: 210–220

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Baylink DJ, Lau KH (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Mohan S, Baylink DJ, Lau KH (2005) Fluid shear stress synergizes with insulin-like growth factor-I (IGF-I) on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway. J Biol Chem 280: 20163–20170

    Article  PubMed  CAS  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Claes L (2000) In vitro effects of dynamic strain on the proliferative and metabolic activity of human osteoblasts. J Musculoskelet Neuronal Interact 1: 161–164

    PubMed  CAS  Google Scholar 

  • Kizer N, Guo XL, Hruska K (1997) Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci USA 94: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53: 576–580

    CAS  Google Scholar 

  • Klein-Nulend J, Van der Plas A, Semeins C, Nasser E, Frangos J, Nijweide P, Burger E (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9: 441–445

    PubMed  CAS  Google Scholar 

  • Lau KH, Kapur S, Kesavan C, Baylink DJ (2006) Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 281: 9576–9588

    Article  PubMed  CAS  Google Scholar 

  • Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27: 586–595

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309: 689–694

    Article  PubMed  CAS  Google Scholar 

  • Li J, Duncan RL, Burr DB, Gattone VH, Turner CH (2003) Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144: 1226–1233

    Article  PubMed  CAS  Google Scholar 

  • Li J, Duncan RL, Burr DB, Turner CH (2002) L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res 17: 1795–1800

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280: 42952–42959

    Article  PubMed  CAS  Google Scholar 

  • Liedert A, Augat P, Ignatius A, Hausser HJ, Claes L (2004) Mechanical regulation of HB-GAM expression in bone cells. Biochem Biophys Res Commun 319: 951–958

    Article  PubMed  CAS  Google Scholar 

  • Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG (2002) ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 282: F501–505

    PubMed  CAS  Google Scholar 

  • Marie PJ (2002) Role of N-cadherin in bone formation. J Cell Physiol 190: 297–305

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Miot S, Barbero A, Jakob M, Wendt D (2006) Osteochondral tissue engineering. J Biomech

    Google Scholar 

  • Mason DJ, Huggett JF (2002) Glutamate transporters in bone. J Musculoskelet Neuronal Interact 2: 406–414

    PubMed  CAS  Google Scholar 

  • Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74: 458–468

    Article  PubMed  CAS  Google Scholar 

  • McGarry JG, Klein-Nulend J, Prendergast PJ (2005) The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun 330: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon JJ, Klein-Nulend J (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24: 1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem (Tokyo) 132: 359–371

    CAS  Google Scholar 

  • Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Norvell SM, Alvarez M, Bidwell JP, Pavalko FM (2004) Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int 75: 396–404

    Article  PubMed  CAS  Google Scholar 

  • Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP (2003) A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 88: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Ponik SM, Pavalko FM (2004) Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J Appl Physiol 97: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Rawlinson SC, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413–3431

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid-Antomarchi H (2003) Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18: 1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico R, Schmid-Alliana A, Romey G, Bourget-Ponzio I, Breuil V, Breittmayer V, Tartare-Deckert S, Rossi B, Schmid-Antomarchi H (2002) Prostaglandin E2 induces interaction between hSlo potassium channel and Syk tyrosine kinase in osteosarcoma cells. J Bone Miner Res 17: 869–878

    Article  PubMed  CAS  Google Scholar 

  • Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 66-A: 397–402

    Google Scholar 

  • Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37: 411–417

    Article  PubMed  CAS  Google Scholar 

  • Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Ryder KD, Duncan RL (2000) Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif Tissue Int 67: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Ryder KD, Duncan RL (2001) Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Jo H, Park H (2006) Caveolin-1 is transiently dephosphorylated by shear stress-activated protein tyrosine phosphatase mu. Biochem Biophys Res Commun 339: 737–741

    Article  PubMed  CAS  Google Scholar 

  • Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H (2005) Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 76: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Tanno M, Furukawa KI, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33: 475–484

    Article  PubMed  CAS  Google Scholar 

  • Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33: 1719–1723

    Article  PubMed  Google Scholar 

  • Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3: 346–355

    Article  PubMed  CAS  Google Scholar 

  • Van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Baumgart R, Jochum M, Strasburger CJ, Bidlingmaier M (2002) Systemic regulation of distraction osteogenesis: a cascade of biochemical factors. J Bone Miner Res 17: 1280–1289

    Article  PubMed  CAS  Google Scholar 

  • Wendt D, Jakob M, Martin I (2005) Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Biosci Bioeng 100: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Weyts FA, Li YS, van Leeuwen J, Weinans H, Chien S (2002) ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem 87: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Wood MA, Hughes S, Yang Y, El Haj AJ (2006) Characterizing the efficacy of calcium channel agonist-release strategies for bone tissue engineering applications. J Control Release v112: 96–102

    Article  CAS  Google Scholar 

  • Wood MA, Yang Y, Thomas PB, Haj AJ (2006) Using dihydropyridine-release strategies to enhance load effects in engineered human bone constructs. Tissue Eng 12: 2489–2497

    Article  PubMed  CAS  Google Scholar 

  • Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14: 1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang X, Wu H, Han D, Guan J (2006) Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro. Med Hypotheses 67: 1414–1418

    Article  Google Scholar 

  • Zhou HY, Ohnuma Y, Takita H, Fujisawa R, Mizuno M, Kuboki Y (1992) Effects of a bone lysine-rich 18 kDa protein on osteoblast-like MC3T3-E1 cells. Biochem Biophys Res Commun 186: 1288–1293

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Liedert, A., Claes, L., Ignatius, A. (2008). Signal Transduction Pathways Involved in Mechanotransduction in Osteoblastic and Mesenchymal Stem Cells. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_11

Download citation

Publish with us

Policies and ethics