Skip to main content

Advertisement

Log in

Osteoblast Responses One Hour After Load-Induced Fluid Flow in a Three-Dimensional Porous Matrix

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

When bone is loaded, substrate strain is generated by the external force and this strain induces fluid flow that creates fluid shear stress on bone cells. Our current understanding of load-driven gene regulation of osteoblasts is based primarily on in vitro studies on planer two-dimensional tissue culture substrates. However, differences between a flat layer of cells and cells in 3-dimensional (3D) ECM are being recognized for signal transduction. Proliferation and differentiation of osteoblasts are affected by substrate geometry. Here we developed a novel 3D culture system that would mimic physiologically relevant substrate strain as well as strain-induced fluid flow in a 3D porous collagen matrix. The system allowed us to evaluate the responses of osteoblasts in a 3D stress-strain environment similar to a mechanical field to which bone is exposed. Using MC3T3-E1 osteoblasts grown in the 3D collagen matrix with and without hydroxyapatite deposition, we tested the role of strain and the strain-induced fluid flow in the expression of the load-responsive genes such as c-fos, egr1, cox2, osteopontin, and mmp1B involved in transcriptional regulation, osteogenesis, and rearrangement of ECM. Strain-induced fluid flow was visualized with a microspheres ~3 μm in diameter in real time, and three viscoelastic parameters were determined. The results obtained by semi-quantitative PCR, immunoblot assay, enzymatic activity assays for collagenase and gelatinase, and mechanical characterization of collagen matrices supported the dominant role of strain-induced fluid flow in expression of the selected genes one hour after the mechanical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. K Honda S Ohno K Tanimoto et al. (2000) ArticleTitleThe effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes Eur J Cell Biol 79 601–609 Occurrence Handle1:CAS:528:DC%2BD3cXot1Squ7c%3D Occurrence Handle11043401

    CAS  PubMed  Google Scholar 

  2. CM Stanford JW Stevens RA Brand (1995) ArticleTitleCellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA J Biomech 28 1419–1427 Occurrence Handle1:STN:280:DyaK283jsFOgtg%3D%3D Occurrence Handle8666582

    CAS  PubMed  Google Scholar 

  3. B Cheng Y Kato S Zhao et al. (2001) ArticleTitlePGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain Endocrinology 142 3464–3473 Occurrence Handle1:CAS:528:DC%2BD3MXls1Sqsbc%3D Occurrence Handle11459792

    CAS  PubMed  Google Scholar 

  4. J You CE Yellowley HJ Donahue Y Zhang Q Chen CR Jacobs (2000) ArticleTitleSubstrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow J Biomech Eng 122 387–393 Occurrence Handle1:STN:280:DC%2BD3cvoslagtA%3D%3D Occurrence Handle11036562

    CAS  PubMed  Google Scholar 

  5. GN Bancroft VI Sikavitsas J Dolder Particlevan den et al. (2002) ArticleTitleFluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner Proc Natl Acad Sci U S A 99 12600–12605 Occurrence Handle1:CAS:528:DC%2BD38XnvFGiu7g%3D Occurrence Handle12242339 Occurrence Handle130506

    CAS  PubMed  PubMed Central  Google Scholar 

  6. E Cukierman R Pankov DR Stevens KM Yamada (2001) ArticleTitleTaking cell-matrix adhesions to the third dimension Science 294 1708–1712 Occurrence Handle1:CAS:528:DC%2BD3MXoslCjs7w%3D Occurrence Handle11721053

    CAS  PubMed  Google Scholar 

  7. KB Hotary ED Alien PC Brooks NS Datta MW Long SJ Weiss (2003) ArticleTitleMembrane type 1 matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix Cell 114 33–45 Occurrence Handle1:CAS:528:DC%2BD3sXlslWqsbY%3D Occurrence Handle12859896

    CAS  PubMed  Google Scholar 

  8. SC Cowin (1999) ArticleTitleBone poroelasticity J Biomech 32 217–238 Occurrence Handle1:STN:280:DyaK1M7pt12rsA%3D%3D Occurrence Handle10093022

    CAS  PubMed  Google Scholar 

  9. K Piekarski M Munro (1977) ArticleTitleTransport mechanism operating between blood supply and osteocytes in long bones Nature 269 80–82 Occurrence Handle1:STN:280:DyaE2s3lsFWltw%3D%3D Occurrence Handle895891

    CAS  PubMed  Google Scholar 

  10. ML Knothe Tate R Steck MR Forwood P Niederer (2000) ArticleTitleIn vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation J Exp Biol 203 Pt 18 2737–2745

    Google Scholar 

  11. SM Tanaka J Li RL Duncan H Yokota DB Burr CH Turner (2003) ArticleTitleEffects of broad frequency vibration on cultured osteoblasts J Biomech 36 73–80 Occurrence Handle12485640

    PubMed  Google Scholar 

  12. G Chen T Ushida T Tateishi (2001) ArticleTitlePoly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates J Biomed Mater Res 57 8–14 Occurrence Handle1:CAS:528:DC%2BD3MXlsVehur8%3D Occurrence Handle11416843

    CAS  PubMed  Google Scholar 

  13. CH Turner T Yoshikawa MR Forwood TC Sun DB Burr (1995) ArticleTitleHigh frequency components of bone strain in dogs measured during various activities J Biomech 28 39–44 Occurrence Handle1:STN:280:DyaK2M7lsFCmtw%3D%3D Occurrence Handle7852440

    CAS  PubMed  Google Scholar 

  14. JC Coleman RT Hart I Owan Y Tankano DB Burr (2002) ArticleTitleCharacterization of dynamic three-dimensional strain fields in the canine radius J Biomech 35 1677–1683 Occurrence Handle12445622

    PubMed  Google Scholar 

  15. MA Fang DA Kujubu TJ Hahn (1992) ArticleTitleThe effects of prostaglandin E2, parathyroid hormone, and epidermal growth factor on mitogenesis, signaling, and primary responsegens in UMR 106-01 osteoblast-like cells Endocrinology 131 2113–2119 Occurrence Handle1:CAS:528:DyaK3sXhsVyg Occurrence Handle1330491

    CAS  PubMed  Google Scholar 

  16. S Wadhwa S Choudhary M Voznesensky M Epstein L Raisz C Pilbeam (2002) ArticleTitleFluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway Biochem Biophys Res Commun 297 46–51 Occurrence Handle1:CAS:528:DC%2BD38Xms1Gntrg%3D Occurrence Handle12220506

    CAS  PubMed  Google Scholar 

  17. H Yokota MB Goldring HB Sun (2003) ArticleTitleCITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear J Biol Chem 278 47275–47280 Occurrence Handle1:CAS:528:DC%2BD3sXovFKkur8%3D Occurrence Handle12960175

    CAS  PubMed  Google Scholar 

  18. HB Sun R Nalim H Yokota (2003) ArticleTitleExpression and activities of matrix metalloproteinases under oscillatory shear in IL-1-stimulated synovial cells Connect Tissue Res 44 42–49 Occurrence Handle1:CAS:528:DC%2BD3sXitVCnurg%3D Occurrence Handle12945803

    CAS  PubMed  Google Scholar 

  19. JG Kunnel JL Gilbert PH Stern (2002) ArticleTitleIn vitro mechanical and cellular responses of neonatal mouse bones to loading using a novel micromechanical-testing device Calcif Tissue Int 71 499–507 Occurrence Handle1:CAS:528:DC%2BD3sXjt1amsg%3D%3D Occurrence Handle12232683

    CAS  PubMed  Google Scholar 

  20. I Owan DB Burr CH Turner et al. (1997) ArticleTitleMechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain Am J Physiol 273 C810–815 Occurrence Handle1:CAS:528:DyaK2sXmtlegtbg%3D Occurrence Handle9316399

    CAS  PubMed  Google Scholar 

  21. A Kawata Y Mikuni-Takagaki (1998) ArticleTitleMechanotransduction in stretched osteocytes—temporal expression of immediate early and other genes Biochem Biophys Res Commun 246 404–408 Occurrence Handle1:CAS:528:DyaK1cXjsFWitb4%3D Occurrence Handle9610372

    CAS  PubMed  Google Scholar 

  22. HB Sun H Yokota (2001) ArticleTitleMessenger-RNA expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, and transcription factors in rheumatic synovial cells under mechanical stimuli Bone 28 303–309 Occurrence Handle1:CAS:528:DC%2BD3MXhvVamtr8%3D Occurrence Handle11248661

    CAS  PubMed  Google Scholar 

  23. S Yamaguchi M Yamaguchi E Yatsuyanagi et al. (2002) ArticleTitleCyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium Lab Invest 82 949–956 Occurrence Handle1:CAS:528:DC%2BD38Xmt1Wltrw%3D Occurrence Handle12118097

    CAS  PubMed  Google Scholar 

  24. HB Sun H Yokota (2002) ArticleTitleReduction of cytokine-induced expression and activity of MMP-1 and MMP-13 by mechanical strain in MH7A rheumatoid synovial cells Matrix Biol 21 263–270 Occurrence Handle1:CAS:528:DC%2BD38XjsFygtr4%3D Occurrence Handle12009332

    CAS  PubMed  Google Scholar 

  25. LE Lanyon AE Goodship CJ Pye JH MacFie (1982) ArticleTitleMechanically adaptive bone remodelling J Biomech 15 141–154 Occurrence Handle1:STN:280:DyaL383jvFCgtg%3D%3D Occurrence Handle7096367

    CAS  PubMed  Google Scholar 

  26. CT Rubin LE Lanyon (1985) ArticleTitleRegulation of bone mass by mechanical strain magnitude Calcif Tissue Int 37 411–417 Occurrence Handle1:STN:280:DyaL28%2FgtF2jsQ%3D%3D Occurrence Handle3930039

    CAS  PubMed  Google Scholar 

  27. EA Pedersen MP Akhter DM Cullen DB Kimmel RR Recker (1999) ArticleTitleBone response to in vivo mechanical loading in C3H/HeJ mice Calcif Tissue Int 65 41–46 Occurrence Handle1:CAS:528:DyaK1MXktlerurs%3D Occurrence Handle10369732

    CAS  PubMed  Google Scholar 

  28. CH Turner MR Forwood MW Otter (1994) ArticleTitleMechanotransduction in bone: Do bone cells act as sensors of fluid flow? FASEB J 8 875–878 Occurrence Handle1:STN:280:DyaK2czltVWrsA%3D%3D Occurrence Handle8070637

    CAS  PubMed  Google Scholar 

  29. A Harell S Dekel I Binderman (1977) ArticleTitleBiochemical effect of mechanical stress on cultured bone cells Calcif Tissue Res 22 IssueIDsuppl 202–207 Occurrence Handle199327

    PubMed  Google Scholar 

  30. AJ Banes GW Link SuffixJr JW Gilbert R Tran Son Tay O Monbureau (1990) ArticleTitleCulturing cells in a mechanically active environment Am Biotechnol Lab 8 12–22 Occurrence Handle1:STN:280:DyaK3czntlWgsA%3D%3D Occurrence Handle1366543

    CAS  PubMed  Google Scholar 

  31. D Kaspar W Seidl C Neidlinger-Wilke A Beck L Claes A Ignatius (2002) ArticleTitleProliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain J Biomech 35 873–880 Occurrence Handle12052389

    PubMed  Google Scholar 

  32. KM Reich CV Gay JA Frangos (1990) ArticleTitleFluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production J Cell Physiol 143 100–104 Occurrence Handle1:CAS:528:DyaK3cXitFCnsbc%3D Occurrence Handle2156870

    CAS  PubMed  Google Scholar 

  33. K Sakai M Mohtai Y Iwamoto (1998) ArticleTitleFluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades Calcif Tissue Int 63 515–520 Occurrence Handle1:CAS:528:DyaK1cXnsVOhtrw%3D Occurrence Handle9817947

    CAS  PubMed  Google Scholar 

  34. EA Nauman RL Satcher TM Keaveny BP Halloran DD Bikle (2001) ArticleTitleOsteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization J Appl Physiol 90 1849–1854 Occurrence Handle1:CAS:528:DC%2BD3MXjsFert70%3D Occurrence Handle11299276

    CAS  PubMed  Google Scholar 

  35. KD Ryder RL Duncan (2001) ArticleTitleParathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels J Bone Miner Res 16 240–248 Occurrence Handle1:CAS:528:DC%2BD3MXptlOruw%3D%3D Occurrence Handle11204424

    CAS  PubMed  Google Scholar 

  36. RL Duncan KA Akanbi MC Farach-Carson (1998) ArticleTitleCalcium signals and calcium channels in osteoblastic cells Semin Nephrol 18 178–190 Occurrence Handle1:CAS:528:DyaK1cXisVKgs74%3D Occurrence Handle9541272

    CAS  PubMed  Google Scholar 

  37. TN McAllister JA Frangos (1999) ArticleTitleSteady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways J Bone Miner Res 14 930–936 Occurrence Handle1:CAS:528:DyaK1MXjvFKqtbY%3D Occurrence Handle10352101

    CAS  PubMed  Google Scholar 

  38. C Granet N Boutahar L Vico C Alexandra MH Lagage-Proust (2001) ArticleTitleMAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts Biochem Biophys Res Commun 284 622–631 Occurrence Handle1:CAS:528:DC%2BD3MXktFKjsbw%3D Occurrence Handle11396946

    CAS  PubMed  Google Scholar 

  39. KM Yamada R Pankov E Cukierman (2003) ArticleTitleDimensions and dynamics in integrin function Braz J Med Biol Res 36 959–966 Occurrence Handle1:CAS:528:DC%2BD3sXnvVSlur8%3D Occurrence Handle12886449

    CAS  PubMed  Google Scholar 

  40. K Wolf I Mazo H Leung et al. (2003) ArticleTitleCompensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis J Cell Biol 160 267–277 Occurrence Handle1:CAS:528:DC%2BD3sXntValtg%3D%3D Occurrence Handle12527751 Occurrence Handle2172637

    CAS  PubMed  PubMed Central  Google Scholar 

  41. S Weinbaum SC Cowin Y Zeng (1994) ArticleTitleA model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses J Biomech 27 339–360 Occurrence Handle1:STN:280:DyaK2czislKkuw%3D%3D Occurrence Handle8051194

    CAS  PubMed  Google Scholar 

  42. R Nalim K Pekkan HB Sun H Yokota (2004) ArticleTitleOscillating Couette flow for in vitro cell loading J Biomech 37 939–942 Occurrence Handle15111082

    PubMed  Google Scholar 

  43. R Shu R McMullen MJ Baumann LR McCabe (2003) ArticleTitleHydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts J Biomed Mater Res 67A 1196–1204 Occurrence Handle1:CAS:528:DC%2BD3sXpslGls7c%3D

    CAS  Google Scholar 

  44. DD Deligianni ND Katsala PG Koutsoukos YF Missirlis (2001) ArticleTitleEffect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength Biomaterials 22 87–96 Occurrence Handle1:CAS:528:DC%2BD3cXntF2ksbw%3D Occurrence Handle11085388

    CAS  PubMed  Google Scholar 

  45. RO Oreffo FC Driessens JA Planell JT Triffitt (1998) ArticleTitleGrowth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements Biomaterials 19 1845–1854 Occurrence Handle1:CAS:528:DyaK1cXnvVKktrY%3D Occurrence Handle9855185

    CAS  PubMed  Google Scholar 

  46. DA Puleo LA Holleran RH Doremus R Bizios (1991) ArticleTitleOsteoblast responses to orthopedic implant materials in vitro J Biomed Mater Res 25 711–723 Occurrence Handle1:CAS:528:DyaK3MXlsVaiu7w%3D Occurrence Handle1874756

    CAS  PubMed  Google Scholar 

  47. JY Hong YJ Kim HW Lee WK Lee JS Ko HM Kim (2003) ArticleTitleOsteoblastic cell response to thin film of poorly crystalline calcium phosphate apatite formed at low temperatures Biomaterials 24 2977–2984 Occurrence Handle1:CAS:528:DC%2BD3sXkvFSnsb0%3D Occurrence Handle12895569

    CAS  PubMed  Google Scholar 

  48. E Nordstrom H Ohgushi T Yoshikawa AT Yokobori SuffixJr T Yokobori (1999) ArticleTitleOsteogenic differentiation of cultured marrow stromal stem cells on surface of microporous hydroxyapatite based mica composite and macroporous synthetic hydroxyapatite Biomed Mater Eng 9 21–26 Occurrence Handle1:CAS:528:DyaK1MXkslOnur8%3D Occurrence Handle10436850

    CAS  PubMed  Google Scholar 

  49. M Ohgaki T Kizuki M Katsura K Yamashita (2001) ArticleTitleManipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite J Biomed Mater Res 57 366–373 Occurrence Handle1:CAS:528:DC%2BD3MXntFChtbw%3D Occurrence Handle11523031

    CAS  PubMed  Google Scholar 

  50. J Klein-Nulend J Roelofsen CM Semeins AL Bronckers EH Burger (1997) ArticleTitleMechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures J Cell Physiol 170 174–181 Occurrence Handle1:CAS:528:DyaK2sXhtVeltro%3D Occurrence Handle9009146

    CAS  PubMed  Google Scholar 

  51. J Roelofsen J Klein-Nulend EH Burger (1995) ArticleTitleMechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro J Biomech 28 1493–1503 Occurrence Handle1:STN:280:DyaK283jsFOnsw%3D%3D Occurrence Handle8666589

    CAS  PubMed  Google Scholar 

  52. SC Cowin S Weinbaum (1998) ArticleTitleStrain amplification in the bone mechanosensory system Am J Med Sci 316 184–188 Occurrence Handle1:STN:280:DyaK1cvhvF2ruw%3D%3D Occurrence Handle9749560

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate Randall Duncan for cell cultures, Taffy Hooser for histology, Caroline Miller for SEM, and Razi Nalim and Kerem Pekkan for the flow analysis. This study was supported by The National Institutes of Health (R01EB001019) and Whitaker Foundation (H.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S.M., Sun, H.B., Roeder, R.K. et al. Osteoblast Responses One Hour After Load-Induced Fluid Flow in a Three-Dimensional Porous Matrix. Calcif Tissue Int 76, 261–271 (2005). https://doi.org/10.1007/s00223-004-0238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0238-2

Keywords

Navigation