Skip to main content

A Lipid-based Code in Nuclear Signalling

  • Chapter
The Codes of Life

Part of the book series: Biosemiotics ((BSEM,volume 1))

Cell signalling in eukaryotes requires mechanisms more complex than in prokaryotes, because the genome is segregated within the nucleus. This is not merely due to the physical gap between the receptor and the genome, owing to the presence of the nuclear envelope, but because of the major complexity of the transcriptional and translational mechanisms in eukaryotes.

This chapter reviews the main evidence of a multiple localization of the inositol lipid signalling system in the cell, i.e. plasma membrane, cytoskeleton, and nucleus. This results in a variety of functions, which depend on the intracellular localization (contestual modulation).

In the nucleus, the elements of the inositol lipid signalling system are located at nuclear domains involved in pre-mRNA processing and in the modulation of the chromatin arrangement. The nuclear signalling system presents the characteristics of an organic code; furthermore, it does not represent a redundancy of the system located at the plasma membrane, but the result of an evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, L. M., Hualu, E., and Ausubel, F. M. (1989), Prokaryotic signal transduction mediated by sensor and regulatory protein pairs. Annu. Rev. Genet. 23: 311–336.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. A., Boronenkov, I. V., Dougham, S. D., Kunz, J., and Loijens, J. C. (1999), Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274: 9907–9910.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (1998), The organic codes: the basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91: 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003), The Organic Codes. Cambridge Univesity Press, Cambridge.

    Google Scholar 

  • Bavelloni, A., Santi, S., Sirri, A., Riccio, M., Faenza, I., Zini, N., Cecchi, S., Ferri, A., Auron, P. E., Maraldi, N. M., and Marmiroli, S. (1999), Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J. Cell Sci. 112: 631–640.

    CAS  PubMed  Google Scholar 

  • Boronenkov, I. V., Loijens, J. C., Umeda, M., and Anderson, R. A. (1998), Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9: 3547–3560.

    CAS  PubMed  Google Scholar 

  • Cocco, L., Gilmour R. S., Ognibene, A., Letcher A. J., Manzoli, F. A., and Irvine, R. F. (1987), Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 248: 765–770.

    CAS  PubMed  Google Scholar 

  • Cooke, F. T. (2002), Phosphatidylinositol 3, 5-bisphosphate: metabolism and function. Arch. Biochem. Biophys. 407: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, P. I., Cozier, G. E., Banting, G., and Mellor, H. (2001), Modular phosphoinositide-binding domains-their role in signalling and membrane trafficking. Curr. Biol. 11: R882–893.

    Article  CAS  PubMed  Google Scholar 

  • Czech, M. P. (2002), Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol, 65: 33.1–33.25.

    Google Scholar 

  • Divecha, N., Banfic, H., and Irvine, R. F. (1993), Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, G., Thomas, C. L., and Schiavo, G. (2004), Nuclear phosphoinositides and their functions. Curr. Top. Microbiol. Immunol. 282: 177–206.

    CAS  PubMed  Google Scholar 

  • Irvine R. F. (2003), Nuclear lipid signalling. Nat. Rev. Mol. Cell Biol. 4:1–12.

    Google Scholar 

  • Irvine, R. F. and Schell, M. J. (2001), Back in the water: the return of the inositol pphosphates. Nat. Rev. Mol. Cell Biol. 2: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. R. and Divecha, N. (2004), Linking lipids to chromatin. Curr. Opin. Genet. Develop 14: 196–202.

    Article  CAS  Google Scholar 

  • Manzoli, F. A., Capitani, S., Maraldi, N. M., Cocco, L., and Barnabei, O. (1979), Chromatin lipids and their possibile role in gene expression. A study in normal and neoplastic cells. Advan. Enzyme Regul. 17: 175–194.

    Article  CAS  Google Scholar 

  • Manzoli, F. A., Maraldi, N. M., Cocco, L., Capitani, S., and Facchini, A. (1977), Chromatin phospholipids in normal and chronic lymphocytic leucemia lymphocytes. Cancer Res 37: 843–849.

    CAS  PubMed  Google Scholar 

  • Maraldi, N. M. and Capitani, S. (2003), The topology of nuclear lipids, in: Cocco, L. and Martelli, A. M. (eds) Nuclear lipid metabolism and signalling. Research Signpost, Kerala, India, pp. 101–121.

    Google Scholar 

  • Maraldi, N. M., Capitani, S., Caramelli, E., Cocco, L., Barnabei, O., and Manzoli, F. A. (1984), Conformational changes of nuclear chromatin related to phospholipid-induced modifications of the template availability. Advan. Enzyme Regul. 22: 447–464.

    Article  CAS  Google Scholar 

  • Maraldi, N. M. and Lattanzi, G. (2005), Linkage of lamins to fidelity of gene transcription. Crit. Rev. Eukar. Gene Express. 15: 277–293.

    CAS  Google Scholar 

  • Maraldi, N. M., Zini, N., Ognibene, A., Martelli, A. M., Barbieri, M., Mazzotti, G., and Manzoli, F. A. (1995), Immunocytochemical detection of the intranuclear variations of phosphatidylinositol 4,5-bisphosphate amount associated with changes of activity and amount of phospholipase Cβ1 in cells exposed to mitogenic or differentiating agonists. Biol. Cell 83: 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Maraldi, N. M., Zini, N., Santi, S., and Manzoli, F. A. (1999), Topology of inositol lipid signal transduction in the nucleus. J. Cell. Physiol. 181: 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Maraldi, N. M., Zini, N., Squarzoni, S., Del Coco, R., Sabatelli, O., and Manzoli, F. A. (1992), Intranuclear localization of phospholipids by ultrastructural cytochemistry. J. Histochem. Cytochem. 40: 1383–1392.

    CAS  PubMed  Google Scholar 

  • Martelli, A. M., Gilmour, R. S., Bertagnolo, V., Neri, L. M., Manzoli, L., and Cocco, L. (1992), Nuclear localization and signalling activity of phospholipase Cβ in Swiss 3T3 cells. Nature 358: 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, A. M., Cocco, L., Bareggi, R., Tabelloni, G., Rizzoli, R., Ghibellini, M. D., and Narducci, P. (1999), Insulin-like growth factor-I-dependent stimulation of nuclear phospholipase C-β1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase. J. Cell Biochem. 72: 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, A. M., Manzoli, L., and Cocco, L. (2004), Nuclear inositides: facts and perspectives. Pharmacol. Therap. 101: 47–64.

    Article  CAS  Google Scholar 

  • Mazzotti, G., Zini, N., Rizzi, E., Rizzoli, R., Galanzi, A., Ognibene, A., Santi, S., Matteucci, S., Martelli, A. M., and Maraldi, N. M. (1995), Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 43: 181–191.

    CAS  PubMed  Google Scholar 

  • Misteli, T. and Spector, D. L. (1997), Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol. 7: 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Odom, A. R., Stahlberg, A., Wente, S. R., and York, J. D. (2000), A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, S. L., Meunier, F. A., and Schiavo, G. (2001), Phosphoinositides as key regulators of synaptic functions. Neuron 32: 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, S. L., Thomas, C. L., Gschmeissner, S., and Schiavo, G. (2001), Nuclear PtdIns(4,5) P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114: 2501–2511.

    CAS  PubMed  Google Scholar 

  • Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J., and Prestwich, G. D. (2000), Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc. Natl. Acad. Sci. USA 97: 11286–11291.

    Article  CAS  PubMed  Google Scholar 

  • Raben, D. M. (2006), Lipid signaling in the nucleus. Biochem. Biophys. Acta 1761: 503–504.

    CAS  Google Scholar 

  • Rando, O. J., Zhao, K., Janmey, P., and Crabtree, G. R. (2002), Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA 99: 2824–2829.

    Article  CAS  PubMed  Google Scholar 

  • Toker, A. (2002), Phosphoinositides and signal transduction. Cell. Mol. Life Sci. 59: 761–779.

    Article  CAS  PubMed  Google Scholar 

  • Watt, S. A., Kular, G., Fleming, I. N., Downes, C. P., and Lucocq, J. M. (2002), Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase Cδ1. Biochem. J. 363: 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., Kuo, A., and Crabtree, G. R. (1998), Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625–636.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Maraldi, N.M. (2008). A Lipid-based Code in Nuclear Signalling. In: Barbieri, M., Hoffmeyer, J. (eds) The Codes of Life. Biosemiotics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6340-4_9

Download citation

Publish with us

Policies and ethics