Skip to main content

Oxygenic Photosynthetic Microorganisms in Extreme Environments

Possibilities and Limitations

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Oxygenic phototrophic microorganisms are abundantly found in environmental extremes of temperature, pH, salt concentration, and radiation. These extremophilic phototrophs include both prokaryotes (cyanobacteria) and eukaryotes (different types of algae).

The prokaryotic cyanobacteria, belonging to the eubacterial domain, do not possess a defined nucleus and have no intracellular membrane-surrounded organelles, while the eukaryotic algae have nucleated, more complex and larger cells that contain chloroplasts and other organelles. It is nowadays well accepted that the prokaryotic anucleated cells have evolved into more developed eukaryotic organisms in a process termed eukaryogenesis.

In this chapter we present a survey of the occurrence of oxygenic phototrophs in extreme environments, exploring the existence of phototrophic thermophiles (lovers of high temperature), psychrophiles (cold-loving organisms), halophiles (high salt-loving organisms), acidophiles (cells thriving at low pH), alkaliphiles (cells living at high pH), and radiation-resistant phototrophs. We then compare the performance of the prokaryotic and the eukaryotic phototrophs in each of the environmental extremes, and discuss the findings in the light of the evolutionary ideas relating to the formation of the eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.B. (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32: 270-277.

    Article  CAS  PubMed  Google Scholar 

  • Beardall, J., and Entwisle, L. (1984) Internal pH of the obligate acidophile Cyanidium caldarium Geitler (Rhodophyta?). Phycologia 23: 397-399.

    Google Scholar 

  • Ben-Amotz, A. (1975) Adaptation of the unicellular alga Dunaliella parva to a saline environment. J. Phycol. 11: 50-54.

    CAS  Google Scholar 

  • Ben-Amotz, A. (1999) Dunaliella β-carotene. From science to commerce. In: J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 399-410.

    Google Scholar 

  • Ben-Amotz, A., and Avron, M. (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol. 37: 95-119.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A., Shaish, A., and Avron, M. (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol. 91: 1040-1043.

    Article  CAS  PubMed  Google Scholar 

  • Bidigare, R.R., Ondrusek, M.E., Kennicutt, M.C. II, Itturiaga, R., Harvery, H.R., Hoham, R.W., and Macko, S.A. (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29: 427-434.

    Article  CAS  Google Scholar 

  • Borowitzka, L.J. (1981) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81: 33-46.

    Article  Google Scholar 

  • Boussiba, S., Wu, X., and Zarka, A. (2000) Alkaliphilic cyanobacteria. In: J. Seckbach (ed.), Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht, pp. 209-224.

    Google Scholar 

  • Brock, T.D. (1969) Microbial growth under extreme conditions. Symp. Soc. Gen. Microbiol. 19: 15-41.

    Google Scholar 

  • Brock, T.D. (1973) Lower pH limit for the existence of blue-green algae; evolutionary and ecological implications. Science 179: 480-483.

    Article  CAS  PubMed  Google Scholar 

  • Brock, T.D. (1978) Thermophilic Microorganismsand Life at High Temperatures. Springer Verlag, New York.

    Google Scholar 

  • Castenholz, R.W., and Garcia-Pichel, F. (2000) Cyanobacterial responses to UV-radiation. In: B.A. Whitton, and M. Potts (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 591-611.

    Google Scholar 

  • Caumette, P., Matheron, R., Raymond, N., and Relexans J.-C. (1994) Microbial mats in the hyper-saline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol. Ecol. 13: 273-286.

    Article  CAS  Google Scholar 

  • Cifferi, O. (1983) Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578.

    Google Scholar 

  • Cohen, Y., Krumbein, W.E., and Shilo, M. (1977) Solar Lake (Sinai). 2. Distribution of photosyn-thetic microorganisms and primary production. Limnol. Oceanogr. 22: 609-620.

    Article  CAS  Google Scholar 

  • Czarnecki, D., and Cawley, E.T. (1997) A new species of Pinnularia (Pinnulariaceae) from iron rich, highly acidic strip-mined coal pits of south-central Iowa. Proc. Acad. Nat. Sci. Philadelphia 147: 111-117.

    Google Scholar 

  • Davies, P. (1999) The Fifth Miracle. Simon and Shuster, New York.

    Google Scholar 

  • Duval, B., Shetty, K., and Thomas, W.H. (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J. Appl. Phycol. 11: 559-566.

    Article  Google Scholar 

  • ˇ, J. (1994) Cell Origin and Evolution. Czechoslovak Society for Microbiology, Praha - Bratislava, Publishing House, VEDA Bratislava.

    Google Scholar 

  • Elster, J. (1999) Algal versatility in various extreme environments. In: J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 215-227.

    Google Scholar 

  • Garcia-Pichel, F., Prufert-Bebout, L., and Muyzer, G. (1996) Phenotypic and phylogenetic analysis show Microcoleus chthonoplastes to be a cosmopolitic cyanobacterium. Appl. Environ. Microbiol. 62: 3284-3291.

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F., Nübel, U., and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotol-erant cyanobacteria. Arch. Microbiol. 169: 469-482.

    Article  CAS  PubMed  Google Scholar 

  • Gerday, C., and Glansdorff, N. (eds.) (2007) Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.

    Google Scholar 

  • Gessner, F. (1959) Hydrobotanik, Vol. II. VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Gokhman, I., Fisher, M., Pick, U., and Zamir, A. (1999) New insights into the extreme salt tolerance of the unicellular green alga Dunaliella. In: A. Oren (ed.), Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, pp. 203-213.

    Google Scholar 

  • Golubic, S. (1980) Halophily and halotolerance in cyanophytes. Orig. Life 10: 169-183.

    Article  CAS  Google Scholar 

  • Grant, W.D., and Tindall, B.J. (1986) The alkaline saline environment. In: R.A. Herbert, and G.A. Codd (eds.), Microbes in Extreme Environments. Academic Press, London, pp. 25-54.

    Google Scholar 

  • Grilli-Cailola, M., and Billi, D. (2007) Chroococcidiopsis from desert to Mars. In: J. Seckbach (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht.

    Google Scholar 

  • Hagemann, M., Schoor, A., Mikkat, S., Effmert, U., Zuther, E., Marin, K., Fulda, S., Vinnemeier, J., Kunert, A., Milkowski, C., Probst, C., and Erdmann, N. (1999) The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria. In: A. Oren (ed.), Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, pp. 177-186.

    Google Scholar 

  • Hausmann, K., and Kremer, B.P. (1995) Extremophile: Mikroorganismen in Ausgefallenen Lebensräumen, 2nd ed. VCH, Weinheim.

    Google Scholar 

  • Hecky, R.E., and Kilham, P. (1973) Diatoms in alkaline saline lakes: ecology and geochemical impli-cations. Limnol. Oceanogr. 18: 53-71.

    CAS  Google Scholar 

  • Hoham, R.W. (1975) Optimum temperatures and temperature ranges for growth of snow alga. Arct. Antarct. Alp. Res. 7: 13-24.

    Google Scholar 

  • Hoham, R.W., and Ling, H.U. (2000) Snow algae. The effects of chemical and physical factors on their life cycles and populations. In: J. Seckbach (ed.), Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht, pp. 131-145.

    Google Scholar 

  • Horikoshi, K., and Grant, W.D. (eds.) (1998) Extremophiles, Microbial Life in Extreme Environments. Wiley-Liss, New York.

    Google Scholar 

  • Javor, B. (1989) Hypersaline Environments. Microbiology and Biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Jeffrey, S.W., MacTavish, H.S., Dunlap, W.C., Vesk, M., and Groenewoud, K. (1999) Occurrence of UV-A- and UV-B-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar. Ecol. Prog. Ser. 189: 35-51.

    Article  CAS  Google Scholar 

  • Jensen, T.E. (1994) Alternative pathway (cyanobacteria to eukaryota). In: J. Seckbach (ed.), Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer Academic Publishers, Dordrecht, pp. 53-66.

    Google Scholar 

  • Jensen, T.E. (1999) Origin of eukaryotic cells by intracellular natural selection. In: E. Wagner, J. Normann, H. Greppin, J.H.P. Hackstein, R.G. Herrmann, K.V. Kowallik, H.E.A. Schenk, and J. Seckbach (eds.), From Symbiosis to Eukaryotism. Endocytobiology VII. University of Freiburg, University of Geneva, pp. 63-74.

    Google Scholar 

  • Klein, R.M., and Cronquist, A. (1967) A consideration of the evolutionary and taxonomic signifi-cance of some biochemical, micromorphological, and physiological characters in the Thallophytes. Quart. Rev. Biol. 42: 105-296.

    CAS  PubMed  Google Scholar 

  • Kristjansson, J.K., and Hreggvidsson, G.O. (1995) Ecology and habitats of extremophiles. World J. Microbiol. Biotechnol. 11: 17-25.

    Article  Google Scholar 

  • Lee, R.E., and Kugrens, P. (2000) Ancient atmospheric CO2 and the timing of evolution of secondary endosymbioses. Phycologia 39: 167-172.

    Article  Google Scholar 

  • Mackay, M.A., Norton, R.S., and Borowitzka, L.J. (1984) Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177-2191.

    CAS  Google Scholar 

  • Madigan, M.T. (2000) Bacterial habitats in extreme environments. In: J. Seckbach, (ed.), Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht, pp. 62-72.

    Google Scholar 

  • Mancinelli, R.L., White, M.R., and Rothschild, L.J. (1998) Biopan survival I: Exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Life Sci. Exobiol. 22: 327-334.

    CAS  Google Scholar 

  • Margulis, L. (1981) Symbiosis in Cell Evolution. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Mereschkovsky, K.C. (1909) Theory of Two Plasms as the Basis of Symbiogenesis, New Studies about the Origin of Organism. Kazan, USSR (in Russian).

    Google Scholar 

  • Nakamura, H. (1999) Non-symbiotic eukaryogenesis membrane evolution theory. In: E. Wagner, J. Normann, H. Greppin, J.H.P. Hackstein, R.G. Herrmann, K.V. Kowallik, H.E.A. Schenk, and J. Seckbach (eds.), From Symbiosis to Eukaryotism. Endocytobiology VII. University of Freiburg, University of Geneva, pp. 53-61.

    Google Scholar 

  • Nübel, U., Garcia-Pichel, F., and Muyzer, G. (2000) The halotolerance and phylogeny of cyanobac-teria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeti-cola gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 86: 1265-1277.

    Google Scholar 

  • Oren, A. (1988) The microbial ecology of the Dead Sea. In: K.C. Marshall (ed.), Advances in Microbial Ecology, Vol. 10. Plenum Publishing Company, New York. pp. 193-229.

    Google Scholar 

  • Oren, A. (1999) Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63: 334-348.

    CAS  PubMed  Google Scholar 

  • Oren, A. (2000) Salts and brines. In: B.A. Whitton, and M. Potts (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 281-306.

    Google Scholar 

  • Oren, A., Gurevich, P., Anati, D.A., Barkan, E., and Luz, B. (1995a) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297: 173-185.

    Article  CAS  Google Scholar 

  • Oren, A., Kühl, M., and Karsten, U. (1995b) An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151-159.

    Article  Google Scholar 

  • Oren, A., and Seckbach, J. (2001) Oxygenic photosynthetic microorganisms in extreme environments. In: J. Elster, J. Seckbach, W. Vincent, and O. Lhotsky (eds.), Algae and Extreme Environments -Ecology and Physiology. Nova Hedwigia Beiheft 123: 13-31.

    Google Scholar 

  • Pick, U. (1999) Dunaliella acidophila - a most extreme acidophilic alga. In: J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 465-478.

    Google Scholar 

  • Pick, U., Karni, L., and Avron, M. (1986) Determination of ion content and ion fluxes in the halo-tolerant alga Dunaliella salina. Plant Physiol. 81: 92-96.

    Article  CAS  PubMed  Google Scholar 

  • Post, F.J. (1977) The microbial ecology of the Great Salt Lake. Microb. Ecol. 3: 143-165.

    Article  CAS  Google Scholar 

  • Reed, R.H., Borowitzka, L.J., Mackay, M.A., Chudek, J.A., Foster, R., Warr, S.R.C., Moore, D.J., and Stewart, W.D.P. (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol. Rev. 39: 51-56.

    Article  CAS  Google Scholar 

  • Roberts, D.McL. (1999) Eukaryotes cells under extreme conditions. In: J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 163-173.

    Google Scholar 

  • Rothschild, L.J. (1999) Microbes and radiation. In: J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 549-562.

    Google Scholar 

  • Sasaki, H., Kataoka, H., Kamiya, M., and Kawai, H. (1999) Accumulation of sulfuric acid in Dictyotales (Phaeophyceae): Taxonomic distribution and ion chromatography of cell extracts. J. Phycol. 35: 732-739.

    Article  CAS  Google Scholar 

  • Seckbach, J. (1981) Ultrastructural studies of Cyanidium caldarium: contribution to phylogenesis. In: J.F. Fredrick (ed.), Origin and evolution of eukaryotic intracellular organelles. Ann. N. Y. Acad. Sci. 361: 409-425.

    Google Scholar 

  • Seckbach, J. (1987) Evolution of eukaryotic cells via bridge algae: The Cyanidia connection. In: J.J. Lee, and J.F. Fredrick (eds.), Endocytobiology III. The New York Academy of Science, pp. 424-448.

    Google Scholar 

  • Seckbach, J. (1992) The Cyanidiophyceae and the “anomalous symbiosis” of Cyanidium caldarium. In: W. Reisser (ed.), Algae and Symbioses: Plants, Animals, Fungi, Viruses, Interactions Explored. Biopress Ltd, Bristol, pp. 399-426.

    Google Scholar 

  • Seckbach, J. (ed.) (1994a) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium and Related Cells. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Seckbach, J. (1994b) The first eukaryotic cells - acid hot-spring algae. J. Biol. Phys. 20: 335-345.

    Article  Google Scholar 

  • Seckbach, J. (1996) Biological aspects of the origin of life: Open questions in eukaryogenesis. In: J. Chela-Flores, and F. Raulin (eds.), Chemical Evolution: Physics of the Origin and Evolution of Life. Kluwer Academic Publishers, Dordrecht, pp. 197-213.

    Google Scholar 

  • Seckbach, J. (1997) Search for Life in the Universe with Terrestrial Microbes which thrive under Extreme conditions. In: C. Cosmovici, S. Bowyer and D. Werthimer (eds.) Astronomical and Biochemical Origins and the Search for Life in the Universe. IAU Colloquium No. 161. Editice Compositori, Bologna, Italy. pp. 511-523.

    Google Scholar 

  • Seckbach, J. (1999) The Cyanidiophyceae: hotspring acidophilic algae. In: J. Seckbach(ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 425-435.

    Google Scholar 

  • Seckbach, J. (2000a) Acidophilic microorganisms. In: J. Seckbach (ed.), Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht, pp. 107-116.

    Google Scholar 

  • Seckbach, J. (ed.) (2000b) Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Seckbach, J. (2000c) Extermophiles as models of extraterrestrial life. In: G.A. Lamardhand, and K.J. Meech (eds.), Bioastronomy’99. A New Era in Bioastronomy. Proceedings of a conference held in the Kohala Coast, Hawaii, 2-6 Aug. 1999, ASP Conference series 231, pp. 379-386.

    Google Scholar 

  • Seckbach, J., and Oren, A. (2000) A vista into the diverse microbial world: An introduction to microbes at the edge of life. In: J. Seckbach (ed.), Journey to Diverse Microbial Worlds. Kluwer Academic Publishers, Dordrecht, pp. 107-116.

    Google Scholar 

  • Seckbach, J., and Oren, A. (2001) Extremophilic microorganisms as candidates for extraterrestrial life. In: R.B. Hoover (ed.), Instruments, Methods, and Missions for Astrobiology III. Proceedings of SPIE, vol. 4137, SPIE - The International Society for Optical Engineering, Bellingham, pp. 89-95.

    Google Scholar 

  • Seckbach, J., Baker, F.A., and Shugarman, P.M. (1970) Algae thrive under pure CO2. Nature 277: 744-745.

    Article  Google Scholar 

  • Seckbach, J., Fredrick, J.F., and Garbary, D.J. (1983) Auto- or exogenous origin of transitional algae: an appraisal. In: H.E.A. Schenk, and W. Schwemmler (eds.), Endocytobiology II, Intracellular Space as Oligogenetic Ecosystem. Walter de Gruyter, Berlin, pp. 947-962.

    Google Scholar 

  • Seckbach, J., Jensen, T.E., Matsuno, K., Nakamura, H., Walsh, M.M., and Chela-Flores, J. (1998) Is there an alternative path in eukaryogenesis?: An astrobiological view on making the nucleated cell. In: J. Chela-Flores, and F. Raulin (eds.), Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. Kluwer Academic Publishers, Dordrecht, pp. 235-240.

    Google Scholar 

  • Sørensen, K.B., Canfield, D.E., and Oren, A. (2004) Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70: 1608-1616.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, C.E.W., Schäfer, H., and Beisker, W. (1998) Do acid-tolerant cyanobacteria exist? Acta Hydrochim. Hydrobiol. 26: 13-19.

    CAS  Google Scholar 

  • Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vincent, W.F. (2000) Cyanobacterial dominance in the polar regions. In: B.A. Whitton, and M. Potts (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 321-340.

    Google Scholar 

  • Walsh, M.M., and Seckbach, J. (1999) The versatility of microorganisms. In: Seckbach J. (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 153-162.

    Google Scholar 

  • Ward, D.M., and Castenholz, R.W. (2000) Cyanobacteria in geothermal habitats. In: B.A. Whitton, and M. Potts (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 37-59.

    Google Scholar 

  • Wegmann, K., Ben-Amotz, A., and Avron, M. (1980) Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant Physiol. 66: 1196-1197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Seckbach, J., Oren, A. (2007). Oxygenic Photosynthetic Microorganisms in Extreme Environments. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_1

Download citation

Publish with us

Policies and ethics