Skip to main content

Nanoprobing fracture length scales

  • Conference paper
Advances in Fracture Research

Abstract

Historically fracture behavior has been measured and modeled from the largest structures of earthquakes and ships to the smallest components of semiconductor chips and magnetic recording media. Accompanying this is an evolutionary interest in scale effects partially due to advances in instrumentation and partially to expanded supercomputer simulations. We emphasize the former in this study using atomic force microscopy, nanoindentation and acoustic emission to probe volumes small in one, two and three dimensions. Predominant interest is on relatively ductile Cu and Au films and semi-brittle, silicon nanoparticles. Measured elastic and plastic properties in volumes having at least one dimension on the order of 10 – 1000 nm, are shown to be state of stress and length scale dependent. These in turn are shown to affect fracture properties. All properties can vary by a factor of three dependent upon scale. Analysis of fracture behavior with dislocation-based, crack-tip shielding is shown to model both scale and stress magnitude effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P.M. and Rice, J.R. (1986). Dislocation emission from cracks in crystals or along crystal interfaces. Scripta Metallurgica, 20, 1467–1472.

    Article  Google Scholar 

  • ASM Handbook on Fatigue and Fracture (1996). ASM International Materials, 19, Park, OH.

    Google Scholar 

  • Bazant, Z.P. (2004). Scaling theory for quasibrittle structural failure, PHAS, 101, National Academy of Sciences, September.

    Google Scholar 

  • Becit, M.R. (1979). Fracture of a surface layer bonded to a half space. International Journal of Engineering and Science 17, 287–295.

    Article  Google Scholar 

  • Begley, M.R. and Ambriso, J.M. (2003). Channel cracking during thermal cycling of thin film multilayers. International Journal of Fracture 119/120, 325–338.

    Article  Google Scholar 

  • Belytschko, T., Xiao, S.P., Schatz, G.C. and Ruoff, R.S. (2004). Atomistic Simulations of Nanotube Fracture, Dept. of Mechanical Engineering Northwestern Unversity, www.tam.northwestern.edu/tb/nano/tubefrac.

    Google Scholar 

  • Binnig, G., Quate, C.F. and Gerber, C. (1987). Atomic force microscope. Physical Review Letters 56, 930–933.

    Article  Google Scholar 

  • Chen, Y.T., Atteridge, D.G. and Gerberich, W.W. (1981). Dislocation dynamics of Fe-binary alloys: I. Low temperature plastic flow. Acta Metallurgica 29, 1171–1185.

    Article  Google Scholar 

  • Christensen, N.E., Ruoff, A.L. and Rodriguez, C.O. (1995). Pressure strengthening: a way to multimegabar static pressures. Physical Review B 52, 9121–9124.

    Article  Google Scholar 

  • Corcoran, S.G., Colton, R.J., Lilleodden, E.T. and Gerberich, W.W. (1997). Anamolous plastic deformation of surfaces: nanoindenation of gold single crystals. Physical Review B 55, 16057–16060.

    Article  Google Scholar 

  • Cordill, M.J., Bahr, D.F., Moody, N.R. and Gerberich, W.W. (2004). Recent developments in thin film adhesion measurement. IEEE Transactions on Device Manufacturing and Reliability 4, 163–168.

    Article  Google Scholar 

  • Cordill, M.J., Moody, N.R. and Bahr, D.F. (2005). The effects of plasticity on adhesion of hard films on ductile interlayers, Acta Materialia, accepted.

    Google Scholar 

  • Curtin, W.A. and Miller, R.E. (2003). Atomistic/continuum coupling in computational materials science. Modelling and Simulation in Materials Science and Engineering 11, R33–R68.

    Article  Google Scholar 

  • Fleischmann, P., Lakestani, F., Baboux, J.C. and Rouby, D. (1977). Spectral and energy analysis of a moving ultrasonic source-application of acoustic emission to aluminum during plastic deformation. Materials Science and Engineering 29, 205–212.

    Article  Google Scholar 

  • Gall, K., Diao, J. and Dunn, M. (2004). Strength of gold nanowires. Nanoletters 4, 2431–2436.

    Google Scholar 

  • Gall, K., Diao, J., Dunn, M.L., Haftel, M., Bernstein, N. and Mehl, M.J. (2005). Tetragonal Phase Transformation in Gold Nanowires, Journal of Engineering Materials and Technology, submitted.

    Google Scholar 

  • Garzke, Jr., W.H, Brown, D.K., Matthias, P.K., Cullimore, R., Wood, D., Livingston, D., Leighty, H.P., Foecke, T. and Sandiford, A. (1997). Titanic, the Anatomy of a Disaster, Report from the Marine/Forensic Panel (SD-7), Soc. Of Naval Architects and Marine Engineers, 1.1–1.47.

    Google Scholar 

  • Gerberich, W.W. and Jatavallabhula, K. (1980). A review of acoustic emission from source controlled by grain size and particle fracture, in Nondestructive Evaluation, (edited by Buck, O. and Wolf, S.M.) TMS, Warrendale, PA, 319–348.

    Google Scholar 

  • Gerberich, W.W. (1985). Interaction of microstructure and mechanism in defining KIc, KIscc, or ΔKth values In: Fracture: Interactions of Microstructure, Mechanisms, and Mechanics, (edited by Wells, J.M. and Landes, J.D.,) TMS, Warrendale, PA, 49.

    Google Scholar 

  • Gerberich, W.W., Yu, W., Kramer, D., Strojny, A., Bahr, D.F, Lilleodden, E.T. and Nelson, J. (1993). Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations. Journal of Materials Research 13, 421–439.

    Google Scholar 

  • Gerberich, W.W., Volinsky, A.A. and Tymiak, N.I. (2000). A brittle to ductile transition in adhered thin films. Materials Research Society Symposium 594, 51–363.

    Google Scholar 

  • Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F. and Baskes, M.I. (2002). Interpretations of indentation size effects. Journal of Applied Mechanics 69, 433–442.

    Article  Google Scholar 

  • Gerberich, W.W., Mook, W.M, Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H. and Girshick, J.L. (2003). Superhard silicon nanospheres. Journal on the Mechanics and Physics of Solids 51, 979–992.

    Article  Google Scholar 

  • Gerberich, W.W., Jungk, J.M., Li, M., Volinsky, A.A., Hoehn, J.W. and Yoder, K. (2003a). Length scales for the fracture of nanostructures. International Journal of Fracture 119/120, 387–405.

    Article  Google Scholar 

  • Gerberich, W.W., Jungk, J.M. and Mook, W.M. (2003b). Crack-dislocation interactions. in Comprehensive Structural Integrity: Interfacial and Nanoscale Failure, (edited by Gerberich, W. and Yang, W.), ch. 10, 357–382.

    Google Scholar 

  • Gerberich, W.W., Cordill, M.J, Mook, W.M., Moody, N.R., Perrey, C.R., Carter, C.B., Mukherjee, R. and Girshick, S.L. (2005). A boundary constraint energy balance criterion for small volume deformation. Acta Materialia, accepted.

    Google Scholar 

  • Gerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J. and Girshick, S.L. (2005a). Reverse plasticity in single crystal silicon nanospheres. International Journal of Plasticity, accepted.

    Google Scholar 

  • Griffith, A.A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A221, 163–198.

    Google Scholar 

  • Griffith, A.A. (1925). The theory of rupture. Proceedings of the 1st Congress on Applied Mechanics, Delft, 55–63.

    Google Scholar 

  • Hall, E.O. (1951). The deformation and ageing of mild steel III. Discussion of results. Proceedings of Physical Science B 64, 747–753.

    Article  Google Scholar 

  • Hansen, N. (2004). Hall-Petch relation and boundary strengthening. Scripta Metallurgica 51, 801–806.

    Google Scholar 

  • Horstemeyer, M.F. and Baskes, M.I. (1991). Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. Transactions of the ASME. Journal of Engineering Materials and Technology 121, 114–119.

    Google Scholar 

  • Huang, H. and Gerberich, W.W. (1992). Crack-tip dislocation emission arrangements for equilibrium-II. Comparisons to analytical and computer simulation models. Acta Metallurgica et Materialia 40, 2873.

    Article  Google Scholar 

  • Huang, H. and Spaepen, F. (2000). Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48, 3261–3269.

    Article  Google Scholar 

  • Hughes, D.A. (2004). Sandia National Laboratories, Livermore, CA, private communication.

    Google Scholar 

  • Hutchinson, J.W. (1968). Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids 16, 3–31.

    Google Scholar 

  • Irwin, G.R. (1948). Fracture dynamics. In: Fracturing of Metals, Am. Soc. For Metals, Cleveland, 147–166.

    Google Scholar 

  • Irwin, G.R. (1960). ASTM Bulletin, Jan., 29.

    Google Scholar 

  • Johnson, K. (1985). Contact Mechanics. Cambridge Univ. Press, U.K., 57.

    MATH  Google Scholar 

  • Jungk, J.M., Boyce, B.L., Buchheit, T.E, Friedmann, T.A., Yang, D. and Gerberich, W.W. (2005). Indentation fracture toughness and acoustic energy release in diamond films, in preparation.

    Google Scholar 

  • Katz, Y., Keller, R.R., Huang, H. and Gerberich, W.W. (1993). A dislocation shielding model for the fracture of semibrittle crystals. Metallurgical Transactions A 24A, 343–350.

    Google Scholar 

  • Lane, M., Dauskardt, R.H., Krishna, N. and Hashim, I. (2000). Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. Journal of Materials Research 15, 203–211.

    Google Scholar 

  • Li, J.C.M. (1986). Scripta Metallurgica 20, 1477.

    Article  Google Scholar 

  • Li, M., Chen, X.-F., Katz, Y. and Gerberich, W.W. (1990). Dislocation modeling and acoustic emission observation of alternating ductile/brittle events in Fe-3wt.%Si crystals. Acta Metallurgica et Materialia 38, 2435–2453.

    Article  Google Scholar 

  • Lin, J.H. and Thomson, R. (1986). Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metallurgica 34, 187–206.

    Article  Google Scholar 

  • Majzoub, R. and Chaudhri, M. (2000). High-speed photography of low-velocity impact cracking of solid spheres. Philosophical Magazine Letters 80, 387.

    Article  Google Scholar 

  • McElhaney, K.W., Vlassak, J.J. and Nix, W.D. (1998). Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research 13, 1300–1306.

    Google Scholar 

  • Michot, G. and George, A. (1982) In situ observation by x-ray synchrotron topography of the growth of plasticity deformed regions around crack tips in silicon under creep conditions. Scripta Metallurgica 16, 519–524.

    Article  Google Scholar 

  • Mook, W.M., Jungk, J.M., Cordill, M.J., Moody, N.R., Sun, Y., Xia, Y. and Gerberich, W.W. (2004). Geometry and surface state effects on the mechanical response of Au nanostructures. Zeischrift fur Metallkunde 95, 416–424.

    Google Scholar 

  • Mook, W.M., Perrey, C.R. Carter, C.B., Mukherjee, R., Girschick, S.L., McMurry, P.H. and Gerberich, W.W. (2005). Scale effects on nanoparticle modulus and fracture, Physical Review B, submitted.

    Google Scholar 

  • Moriarty, J.A., Belak, J.F., Rudd, R.E., Soderlind, P., Streitz, F.H. and Yang, L.H. (2002). Quantumbased atomistic simulation of materials properties in transition metals. Journal of Physics: Condensed Matter 14, 2825–2857.

    Article  Google Scholar 

  • Murnaghan, F. (1967). Finite Deformation in an Elastic Solid. Dover Publ., New York.

    Google Scholar 

  • Nix W.D., Gao H (1998). Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411–425.

    Article  Google Scholar 

  • Oliver, W.C. and Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 1, 1564–1583.

    Google Scholar 

  • Orowan, E. (1950). Fatigue and Fracture of Metals. MIT Press, Cambridge, MA, 139.

    Google Scholar 

  • Parker, E.R. (1957). Brittle Behavior of Engineering Structures. National Academy of Sciences, National Research Council, J. Wiley, New York.

    Google Scholar 

  • Petch, N.J. (1953). Journal of the Iron and Steel Institute 173, 25.

    Google Scholar 

  • Poirier, J.-P. (2000). Murnaghan’s integrated linear equation of state. In: Introduction to the Physics of the Earth’s Interior, 2nd Ed., Cambridge University Press, 65.

    Google Scholar 

  • Read, D.T. (1998). Piezo-actuated microtensile test apparatus. Journal of Testing & Evaluation 26, 255–259.

    Google Scholar 

  • Rice, J.R. (1969). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied. Mechanics 35, 379–386.

    Google Scholar 

  • Rice, J.R. and Thomson, R. (1974). Ductile versus brittle behaviour of crystals. Philosophical Magazine 29, 74–97.

    Google Scholar 

  • Shipway, P.H. and Hutchings, I.M. (1993). Fracture of brittle spheres under compression and impact loading. I. Elastic stress distributions. Philosophical Magazine A67, 1389–1404.

    Google Scholar 

  • Suo, Z., Shih, F. and Varias, A. (1993). A theory for cleavage cracking in the presence of plastic flow. Acta Metallurgica et Materialia 41, 551–557.

    Article  Google Scholar 

  • Thomson, R. (1986). Dislocation emission from cracks in crystals or along crystal interfaces. Scripta Metallurgica 20, 1473.

    Google Scholar 

  • Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, T.J. and Gerberich, W.W. (2001). Plastic strain and strain gradients at very small indentation depths. Acta Materialia 49, 1021–1034.

    Article  Google Scholar 

  • Tymiak, N.I., Daugela, A., Wyrobek, T.J. and Warren, O.L. (2004). Acoustic emission monitoring of the earliest stages of contact-induced plasticity in sapphire. Acta Materialia 52, 553–563.

    Article  Google Scholar 

  • Van Swygenhoven, H. and Spaczer, M. (1989). Competing plastic deformation mechanisms in nanophase metals. Physical Review B 60, 22–25.

    Article  Google Scholar 

  • Van Vliet, K., Li, J., Zhu, T., Yip, S. amd Suresh, S. (2003). Quantifying the early stages of plasticity through nanoscale experiments and simulations. Physical Review B Physical Review B, 104–105.

    Google Scholar 

  • Vlassak, J.J. (2003). Channel cracking in thin films on substrate of finite thickness. International Journal of Fracture 119/ 120, 299–323.

    Google Scholar 

  • Volinsky, A.A., Moody, N.R. and Gerberich, W.W. (2002). Interfacial toughness measurements for thin films on substrates. Acta Materialia 50, 441–466.

    Article  Google Scholar 

  • Volinsky, A.A., Moody, N.R., Kottke, M.L. and Gerberich, W.W. (2002a). Fiducial mark and nanocrack zone formation during thin-film delaminating. Philosophical Magazine A 82, 3383–3391.

    Article  Google Scholar 

  • Wei, Y. and Hutchinson, J.W. (1997). Nonlinear delamination mechanics for thin films. Journal of the Mechanics and Physics of Solids 45, 1137–1159.

    Article  MathSciNet  Google Scholar 

  • Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Gerberich, W.W. et al. (2006). Nanoprobing fracture length scales. In: Carpinteri, A., Mai, YW., Ritchie, R.O. (eds) Advances in Fracture Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5423-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5423-5_7

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4626-1

  • Online ISBN: 978-1-4020-5423-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics