Skip to main content

Cyclic Electron Transfer Around Photosystem I

  • Chapter
Photosystem I

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

Cyclic electron transport around Photosystem I remains one of the last great enigmas in photosynthesis research. Although first described in 1955 by Arnon and coworkers, the molecular details of the pathway, its physiological role and even its very occurrence remain in question. Nevertheless, significant progress is starting to be made in our understanding of this process. At least two pathways of cyclic electron transport appear to operate, one involving the transfer of electrons from NADPH to plastoquinone and the other operating via the donation of electrons from ferredoxin to plastoquinone. The relative importance of these two pathways seems to vary between cyanobacteria, unicellular green algae and higher plants as do many details concerning the regulation of the pathway and its functional organization in the thylakoid membrane. Two distinct functions for cyclic electron transport can be defined — the generation of ATP and, in higher plants, the generation of ΔpH to regulate light harvesting. These two functions give rise to the need for different regulatory processes to control the ratio of cyclic and linear electron flow. We discuss recent findings that cast new light on how cyclic electron transport is regulated under a range of physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson PA (1995) The structure and function of the chloroplast photosynthetic membrane –a model for the domain organization. Photosynth Res 46: 141–149

    Article  CAS  Google Scholar 

  • Albertsson PA (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Alric J, Pierre Y, Picot D, Lavergne J and Rappaport F (2005) Spectral and redox characterization of the heme ci of the cytochrome b6f complex. Proc Natl Acad Sci USA 102: 15860–15865

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1983) Regulation of photosynthetic phosphorylation. CRC Crit Rev Plant Sci 1: 1–22

    CAS  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (1989) The grana margins of plant thylakoid membranes. Physiol Plant 76: 243–248

    Article  CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll–protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1955) The chloroplast as a complete photosynthetic unit. Science 122: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184: 10–21

    PubMed  CAS  Google Scholar 

  • Arnon DI and Chain RK (1977) Role of oxygen in ferredoxin-catalyzed cyclic photophosphorylation. FEBS Lett 82: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Allen MB and Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature 174: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Losada M, Nozaki M and Tagawa K (1961) Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature 190: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Aro EM and Ohad I (2003) Redox regulation of thylakoid protein phosphorylation. Antioxid Redox Signal 5: 55–67

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Heber U and Schreiber U (1993) Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol 34: 39–50

    CAS  Google Scholar 

  • Badger M and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Botany 54: 609–622

    Article  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S and Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801

    Article  PubMed  CAS  Google Scholar 

  • Barth C and Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta 216: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, dal Belin Peruffo A, Barbato R and Ghisi R (1985) Differences in chlorophyll–protein complexes and composition of polypeptides between thylakoids from bundle sheaths and mesophyll cells in maize. Eur J Biochem 146: 589–595

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Article  Google Scholar 

  • Bonaventura C and Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189: 366–383

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S and Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59: 81–93

    Article  CAS  Google Scholar 

  • Bultá L, Gans P, Rebáillá F and Wollman F-A (1990) ATP control on state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020: 72–80

    Article  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    Article  PubMed  CAS  Google Scholar 

  • Carillo N and Vallejos RH (1983) The light-dependent modulation of photosynthetic electron transport. TIBS February 1983: 52–56

    Google Scholar 

  • Casano LM, Zapata JM, Martin M and Sabater B (2000) Chlororespiration and poising of cyclic electron transport –plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275: 942–948

    Article  PubMed  CAS  Google Scholar 

  • Clark RD, Hawkesford MJ, Coughlan SJ, Bennett J and Hind G (1984) Association of ferredoxin NADP+ oxidoreductase with the chloroplast cytochrome b–f complex. FEBS Lett 174: 137–142

    Article  CAS  Google Scholar 

  • Clarke JE and Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212: 808–816

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE and Bendall DS (1992) Photosystem-I cyclic electron transport –measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34: 409–418

    Article  CAS  Google Scholar 

  • Cooley JW, Howitt CA and Vermaas WFJ (2000) Succinate:quinol oxidoreductase in the cyanobacterium Synechocystis sp. Strain PCC 6803: presence and function in metabolism and electron transport. J Bacteriol 182: 714–722

    Article  PubMed  CAS  Google Scholar 

  • Cornic G, Bukhov NG, Wiese C, Bligny R and Heber U (2000) Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C-3 plants. Role of photosystem I-dependent proton pumping. Planta 210: 468–477

    Article  PubMed  CAS  Google Scholar 

  • Cox RP and Andersson B (1981) Lateral and transverse organisation of cytochromes in the chloroplast thylakoid membrane. Biochem Biophys Res Commun 103: 1336–1342

    PubMed  CAS  Google Scholar 

  • Crofts AR, Meinahrdt SW, Jones KR and Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism. Biochim Biophys Acta 723: 202–218

    Article  CAS  Google Scholar 

  • Deng Y, Ye JY and Mi H (2003) Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around Photosystem I in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 44: 534–540

    Article  PubMed  CAS  Google Scholar 

  • Diner B and Mauzerall D (1973) Feedback controlling oxygen production in a cross-reaction between two photosystems in photosynthesis. Biochim Biophys Acta 305: 329–352

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP and Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413: 117–129

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F and Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Fork DC and Herbert SK (1993) Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36: 149–168

    Article  CAS  Google Scholar 

  • Frenkel AW (1954) Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76: 5568–5569

    Article  CAS  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K and Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteriae, Vol 1, pp 677–692. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Genty B, Briantais J-M and Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Gerst U, Schreiber U, Neimanis S and Heber U (1995) Photosystem I dependent cyclic electron flow contributes to control of Photosystem II in leaves when stomata close under water stress. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Proceedings of the Xth International Photosynthesis Congress, Vol II, pp 835–838. Kluwer Academic Publishers, Montpellier

    Google Scholar 

  • Golding AJ and Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G and Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants–evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220: 356–363

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J (1994) The responses of thylakoid electron transport and light utilization efficiency to sink limitation of photosynthesis. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis, from Molecular Mechanisms to the Field, pp 273–295. BIOS scientific publishers Springer, The Netherlands

    Google Scholar 

  • Harbinson J and Foyer CH (1991) Relationships between the efficiencies of Photosystem-I and Photosystem-II and stromal redox state in CO2-free air –evidence for cyclic electron flow in vivo. Plant Physiol 97: 41–49

    PubMed  CAS  Google Scholar 

  • Harbinson J and Hedley CL (1993) Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103: 649–660

    PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B and Baker NR (1990) The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res 25: 213–224

    Article  CAS  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M and Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Hauser M, Eichelmann H, Oja V, Heber U and Laisk A (1995) Stimulation by light of repid pH regulation in the chloroplast stroma in vivo as indicated by CO2 solubilization in leaves. Plant Physiol 108: 1059–1066

    PubMed  CAS  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73: 223–231

    Article  PubMed  CAS  Google Scholar 

  • Heber U and Walker D (1992) Concerning a dual function of coupled cyclic electron-transport in leaves. Plant Physiol 100: 1621–1626

    PubMed  CAS  Google Scholar 

  • Heber U, Egneus H, Hanck U, Jensen M and Koster S (1978) Regulation of photosynthetic electron transport and phosphorylation in intact chloroplasts and leaves of Spinacia oleracea L. Planta 143: 41–49

    Article  CAS  Google Scholar 

  • Heber U, Neimanis S, Siebke K, Schonknecht G and Katona E (1992) Chloroplast energization and oxidation of P700 and plastocyanin in illuminated leaves at reduced levels of CO2 or oxygen. Photosynth Res 34: 433–447

    Article  CAS  Google Scholar 

  • Herbert SK, Fork DC and Malkin R (1990) Photoacoustic measurements in vivo of energy storage by cyclic electron transport in algae and higher plants. Plant Physiol 94: 926–934

    PubMed  CAS  Google Scholar 

  • Hill R and Bendall F (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–137

    Article  CAS  Google Scholar 

  • Hiyama T and Ke B (1971) A further study of P430. A possible primary acceptor of photosystem I. Arch Biochem Biophys 147: 99–180

    Article  PubMed  CAS  Google Scholar 

  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G and Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123: 1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Hosler JP and Yocum CF (1985) Evidence for 2 cyclic photophosphorylation reactions concurrent with ferredoxin-catalyzed non-cyclic electron-transport. Biochim Biophys Acta 808: 21–31

    Article  CAS  Google Scholar 

  • Jagendorf AT and Avron M (1958) Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem 231: 277–290

    PubMed  CAS  Google Scholar 

  • Jeanjean R, Bedu S, Havaux M, Matthijs HCP and Joset F (1998) Salt-induced photosystem I cyclic electron transfer restores growth on low inorganic carbon in a type 1 NAD(P)H dehydrogenase deficient mutant of Synechocystis PCC 6803. FEMS Microbiol Lett 167: 131–137

    Article  CAS  Google Scholar 

  • Joët T, Cournac L, Peltier G and Havaux M (2002) Cyclic electron flow around photosystem I in C-3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128: 760–769

    Article  PubMed  Google Scholar 

  • Johnson GN (2003) Thiol regulation of the thylakoid electron transport chains: a missing link in the regulation of photosynthesis? Biochemistry 42: 3040–3044

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (1988) The low-potential electron-transfer chain in the cytochrome b/f complex. Biochim Biophys Acta 933: 319–333

    Article  CAS  Google Scholar 

  • Joliot P and Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99: 10209–10214

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2004) Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim Biophys Acta 1656: 166–176

    Article  PubMed  CAS  Google Scholar 

  • Joliot, P and Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102: 4913–4918

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Lavergne J and B´al D (1992) Plastoquinone compartmentation in chloroplasts. 1. Evidence for domains with different rates of photo-reduction. Biochim Biophys Acta 1101: 1–12

    CAS  Google Scholar 

  • Joliot P, Beal D and Joliot A (2004) Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim Biophys Acta 1656: 166–176

    Article  PubMed  CAS  Google Scholar 

  • Katona E, Neimanis S, Schonknecht G and Heber U (1992) Photosystem I-dependent cyclic electron-transport is important in controlling Photosystem-II activity in leaves under conditions of water-stress. Photosynth Res 34: 449–464

    Article  CAS  Google Scholar 

  • Kirchhoff H, Horstmann S and Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion microdomaines in thylakoids of higher plants. Biochim Biophys Acta 1459: 148–168

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C and Schreiber U (1994) An improved method, using saturating light-pulses, for the determination of Photosystem-I quantum yield via P+ 700- absorbency changes at 830 nm. Planta 192: 261–268

    Article  CAS  Google Scholar 

  • Kurisu G, Zhang HM, Smith JL and Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Laisk A (1993) Mathematical modelling of free-pool and channelled electron transport in photosynthesis: evidence for a functional supercomplex around photosystem 1. Proc R Soc Lond B 251: 243–251

    Article  CAS  Google Scholar 

  • Laisk A, Oja V and Heber U (1992) Steady-state and induction kinetics of the photosynthetic electron transport related to donor side oxidation and acceptor side reduction of photosystem 1 in sunflower leaves. Photosynthetica 27: 449–463

    CAS  Google Scholar 

  • Lascano HR, Casano LM, Martin M and Sabater B (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol 132: 256–262

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J (1983) Membrane potential-dependent reduction of cyt b6 in algal mutant lacking Photosystem I centers. Biochim Biophys Acta 725: 25–33

    Article  CAS  Google Scholar 

  • Lavergne J, Bouchaud JP and Joliot P (1992) Plastoquinone compartmentation in chloroplasts. 2. Theoretical aspects. Biochim Biophys Acta 1101: 13–22

    CAS  Google Scholar 

  • Matthijs HCP, Jeanjean R, Yeremenko N, Huisman J, Joset F and Hellingwerf KJ (2002) Hypothesis: versatile function of ferredoxin-NADP(+) reductase in cyanobacteria provides regulation for transient photosystem I-driven cyclic electron flow. Funct. Plant Biol. 29: 201–210

    Article  CAS  Google Scholar 

  • Maxwell PC and Biggins J (1976) Role of cyclic electron transport in photosynthesis as measured by photoinduced turnover of P700 in vivo. Biochemistry 15: 3975–3981

    Article  PubMed  CAS  Google Scholar 

  • Mehler AT (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    Article  CAS  Google Scholar 

  • Mi HL, Endo T, Schreiber U and Asada K (1992a) Donation of electrons from cytosolic components to the intersystem chain in the cyanobacterium Synechococcus sp PCC 7002 as determined by the reduction of P700+. Plant Cell Physiol 33: 1099–1105

    CAS  Google Scholar 

  • Mi HL, Endo T, Schreiber U, Ogawa T and Asada K (1992b) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine-nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33: 1233–1237

    CAS  Google Scholar 

  • Mi HL, Klughammer C and Schreiber U (2000) Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol 41: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M and Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45: 1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H and Tomizawa K (2005a) Effects of light intensity on cyclic electron flow around PS I and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol 46: 1819–1830

    Article  CAS  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y and Tomizawa K (2005b) CO2 response of cyclic electron flow around PS I (CEF-PS I) in tobacco leaves–relative electron fluxes through PS I and PS II determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46: 629–637

    Article  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59: 137–199

    Article  PubMed  CAS  Google Scholar 

  • Moss DA and Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767: 389–395

    Article  CAS  Google Scholar 

  • Mullineaux CW (1999) The thyalkoid membranes of cyanobacteria: structure dynamics and function. Aust J Plant Physiol 26: 671–677

    Article  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M and Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (1991) Cloning and inactivation of a gene essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiol 96: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Oxborough K and Horton P (1987) Characterisation of the effects of antimycin A upon high-energy-state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth Res 12: 119–128

    Article  CAS  Google Scholar 

  • Sacksteder A and Kramer DM (2000) Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer. Photosynth Res 66: 145–158

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G and Malkin R (1983) NADH and NADPH as electron donors to respiratory and photosynthetic electron transport in the blue-green alga Aphanocapsa. Biochim Biophys Acta 725: 21–224

    Google Scholar 

  • Sandmann G and Malkin R (1984) Light inhibition of respiration is due to a dual function of the cytochrome b6f complex and the plastocyanin/cytochrome c-533 pool in Aphanocapsa. Arch Biochem Biophys 234: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Burrows P and Nixon PJ (1995) Presence of a large protein complex containing the ndhK gene product and possessing NADH-specific dehydrogenase activity in thylakoid membranes of higher plant chloroplasts. In: Mathis P (ed) Photosynthesis: From Light to Biosphere Xth International Congress on Photosynthesis, Vol 2, pp 705–708. Kluwer Academic Publishers, Montpellier, France

    Google Scholar 

  • Sazanov LA, Burrows PA and Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429: 115–118

    Article  PubMed  CAS  Google Scholar 

  • Schankser G, Srivastava A, Govindjee and Strasser RJ (2003) Characterisation of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OIJP) in pea leaves. Funct Plant Biol 30: 785–796

    Article  Google Scholar 

  • Scheller H (1996) In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110: 187–194

    PubMed  CAS  Google Scholar 

  • Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? TIBS 15: 458–462

    PubMed  Google Scholar 

  • Schmetteter G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Vol 1, pp 409–435. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H and Muller DJ (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405: 418–419

    Article  PubMed  CAS  Google Scholar 

  • Sherman DM, Troyan TA and Sherman LA (1994) Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC 7942. Plant Physiol 106: 251–262

    PubMed  CAS  Google Scholar 

  • Shinokazi K, Ohme M, Tanaka M, Wakasuki T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinokazi K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    Google Scholar 

  • Smith L and Baltscheffsky M (1959) Respiration and light-induced phosphorylation in extracts of Rhodospirillum rubrum. J Biol Chem 234: 1575–1579

    PubMed  CAS  Google Scholar 

  • Strasser RJ, Schansker G, Srivastava A and Govindjee (2001) Simultaneous measurement of Photosystem I and Photosystem II probed by modulated transmission at 820 nm and by chlorophyll a fluorescence in the sub ms to second time range. In: Critchley C (ed) PS2001 12th International Congress on Photosynthesis, pp S14–003. CSIRO Publishers, Brisbane, Australia

    Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b6f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963a) Analysis of photosynthetic reactions by the use of monochromatic light. Nature 199: 1247–1252

    Article  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963b) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49: 567–572

    Article  CAS  Google Scholar 

  • Teicher BH, Moller BL and Scheller HV (2000) Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.): induction, recovery and acclimation. Photosynth Res 64: 53–61

    Article  CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese P, Olive J, Bassi R and Wollman FA (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88: 8262–8266

    Article  PubMed  CAS  Google Scholar 

  • van Thor JJ, Jeanjean R, Havaux M, Sjollema KA, Joset F, Hellingwerf KJ and Matthijs HCP (2000) Salt shock-inducible Photosystem I cyclic electron transfer in Synechocystis PCC 6803 relies on binding of ferredoxin:NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim Biophys Acta 1457: 129–144

    Article  PubMed  Google Scholar 

  • Wang HW, Mi HL, Ye JY, Deng Y and Shen YK (2003) Low concentrations of NaHSO3 increase cyclic photophosphorylation and photosynthesis in cyanobacteriumSynechocystis PCC 6803. Photosynth Res 75: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Webber AN, Platt-Aloia KA, Heath RL and Thomson WW (1988) The marginal regions of thylakoid membranes: a partial characterization by polyoxyethylene sorbitane monolaurate (Tween 20) solubilization of spinach thylakoids. Physiol Plant 72: 288–297

    Article  CAS  Google Scholar 

  • Whatley FR (1963) Some effects of oxygen in photosynthesis by chloroplast preparations. In: Kok B and Jagendorf A (eds) Photosynthetic Mechanisms of Green Plants, pp 243–250. National Academy of Sciences –National Research Council, Washington, DC

    Google Scholar 

  • Whatley FR, Allen MB and Arnon DI (1959) Photosynthesis by isolated chloroplasts. VII. Vitamin K and Riboflavin Phosphate as cofactors of cyclic photophosphorylation. Biochim Biophys Acta 32: 32–46

    Article  PubMed  CAS  Google Scholar 

  • Wollman F-A and Bultá L (1989) Toward an understanding of the physiological role of state transitions. In: Hall DO and Grassi G (eds) Photoconversion Processes for Energy and Chemicals, pp 198–207. Elsevier, Amsterdam

    Google Scholar 

  • Yu L, Zhao JD, Muhlenhoff U, Bryant DA and Golbeck JH (1993) PsaE is required for in vivo cyclic electron flow around Photosystem-I in the cyanobacterium Synechococcus sp. PCC-7002. Plant Physiol 103: 171–180

    PubMed  CAS  Google Scholar 

  • Zhang HM, Whitelegge JP and Cramer WA (2001) Ferredoxin:NADP(+) oxidoreductase is a subunit of the chloroplast cytochrome b(6)f complex. J Biol Chem 276: 38159–38165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Joliot, P., Joliot, A., Johnson, G. (2006). Cyclic Electron Transfer Around Photosystem I. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_37

Download citation

Publish with us

Policies and ethics