Skip to main content

Roles for Reactive Oxygen Species and Antioxidants in Plant Mitochondria

  • Chapter
Plant Mitochondria: From Genome to Function

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 17))

Summary

The genome-environment interaction is crucial to sustainability and productivity. Environmental triggers have the single most important impact on plant gene transcription, metabolism and physiology. Since plants are sedentary organisms they have to display an extreme metabolic and morphological plasticity in order to withstand and survive unfavorable changes in the local environment. Nevertheless, extremes of environment such as low temperature and drought have a major, negative impact upon plant growth and survival. Cellular damage occurring during environmental stress is caused by uncontrolled oxidation linked to the accumulation of oxygen free radicals or other reactive oxygen species (ROS). Mitochondria have not traditionally been regarded as an important source of ROS in photosynthetic tissues. However, while the amount of ROS produced by mitochondria is low in comparison to pho-tosynthetic oxidant production, mitochondrial ROS are produced in all cell types and throughout the diurnal cycle. In addition to increasing oxidative load, ROS generated in mitochondria could be part of the repertoire of redox signals that influences whole-cell redox homeostasis. Mitochondria house both enzymic and non-enzymic antioxidants but most importantly they produce ascorbic acid, the major redox buffer of plant cells. The final reaction of ascorbate biosynthesis is linked to respiratory electron flow, which may in itself control the rate of synthesis. Mitochondria are important in the induction phase of programmed cell death in animals and much recent research has concerned the search for parallel functions in plants. While current information is limited, evidence is accumulating that plant mitochondria play a central role in oxidative stress tolerance. Moreover, it is becoming clear that mitochondrial redox signals influence the cellular redox-stat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AOS:

active oxygen species

AOX:

alternative oxidase

APX:

ascorbate peroxidase

CMS:

cytoplasmic male sterility

PCD:

programmed cell death

PTP:

permeability transition pore

ROS:

reactive oxygen species

Rubisco:

ribulose 1,5-bisphosphate carboxylase oxygenase

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA and Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galactur-onic acid reductase. Nat Biotechnol 21:177–181

    Article  PubMed  CAS  Google Scholar 

  • Arpagaus S, Rawyler A and Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277: 1780–1787

    Article  PubMed  CAS  Google Scholar 

  • Arrigoni O and de Tullio M (2000) The role of ascorbic acid in cell metabolism: between gene-directed functions and unpre­dictable chemical reactions. J Plant Physiol 157: 481–88

    Article  CAS  Google Scholar 

  • Baier M and Dietz KJ (1997) The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expres-sional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J 12: 179–190

    Article  PubMed  CAS  Google Scholar 

  • Baier M and Dietz KJ (1999) Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. Plant Physiol 119: 1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Balk J and Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13: 1803–1818

    PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ and McCabe PF (1999) Translocation of cytochrome c from mitochondria to cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Pastori GM and Foyer CH (2000) Ascorbate biosyn­thesis in mitochondria is linked to the electron transport chain between complexes III and IV Plant Physiol 123: 335–344

    CAS  Google Scholar 

  • Beyer RE (1990) The participation of coenzyme Q in free radi­cal production and antioxidation. Free Radic Biol Med 8: 545–565

    Article  PubMed  CAS  Google Scholar 

  • Borecky J, Maia IG, Costa AD, Jezek P, Chaimovich H, de Andrade PB, Vercesi AE and Arruda P (2001) Functional reconstitution of Arabidopsis thaliana plant uncoupling mito­chondrial protein (AtPUMPl) expressed in Escherichia coli. FEBS Lett 505: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Oshino N and Chance B (1972) The cellular produc­tion of hydrogen peroxide. Biochem J 128: 617–630

    PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M and Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732

    PubMed  CAS  Google Scholar 

  • Bryk R, Griffin P and Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J, Brand MD and Sweetlove LJ (2003) Superoxide stimulates a proton leak in potato mitochondria that is related to the activ­ity of uncoupling protein. J Biol Chem 278: 22298–22302

    Article  PubMed  CAS  Google Scholar 

  • Day DA and Wiskich JT (1995) Regulation of alternative oxidase activity in higher plants. J Bioenerg Biomembr 27: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, S AH-M, Hancock JT and Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127: 159–172

    Article  CAS  Google Scholar 

  • Douce R (1985) Mitochondria in Higher Plants: Structure, Function, and Biogenesis. Academic Press, London.

    Google Scholar 

  • Douce R and Neuberger M (1989) The uniqueness of plant mitchondria. Annu Rev Plant Physiol Plant Mol Biol 40: 371–414

    Article  CAS  Google Scholar 

  • Du G, Mouithys-Mickalad A and Sluse FE (1998) Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic Biol Med 25: 1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Driscoll S, Comic G, De Paepe R, Foyer CH and Noctor G (2003a) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic per­formance in photorespiratory conditions and during tran­sients. Plant Physiol 131: 264–275

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Mathieu C, Chetrit P, Noctor G, Foyer C and De Paepe R (2003b) Inter-organellar anti-oxidant cross­talk maintains redox cell homeostasis in a respiratory Complex I mutant. Plant Cell 15: 1212–1226

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Murphy MP, Smith RA, Talbot DA and Brand MD (2002a) Superoxide activates mitochondrial uncoupling pro­tein 2 from the matrix side. Studies using targeted antioxi­dants. J Biol Chem 277: 47129–7135

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC and Brand MD (2002b) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Echtay KS, Winkler E and Klingenberg M (2000) Coenzyme Q is an obligotory cofactor for uncoupling protein function. Nature 408: 609–613

    Article  PubMed  CAS  Google Scholar 

  • Fleury C, Mignotte B and Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84: 131–141

    Article  PubMed  CAS  Google Scholar 

  • Fortes F, Castilho RF, Catisti R, Carnieri EG and Vercesi AE (2001) Ca2+ induces a cyclosporin A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species. J Bioenerg Biomembr 33: 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Foyer C, Lelandais M and Kunert K (1994) Photooxidative stress in plants. Physiol Plant 92: 696–717

    Article  CAS  Google Scholar 

  • Foyer C and Noctor G (2003) Redox sensing and signaling in chloroplasts and mitochondria. Physiol Plant 119: 355–364

    Article  CAS  Google Scholar 

  • Foyer CH and Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146: 359–388

    Article  CAS  Google Scholar 

  • Garmier M, Dutilleul C, Mathieu C, Chetrit P, Boccara M and De Paepe R (2002) Changes in antioxidant expression and harpin-induced hypersenstive response in a Nicotiana sylvestris mitochondrial mutant. Plant Physiol Biochem 40: 561–566

    Article  CAS  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G and Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Gomez J, Hernandez J, Jimenez A, del Rio L and Sevilla F (1999) Differential response of antioxidative system of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Rad Res 31: 11–18

    Article  Google Scholar 

  • Green DR and Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1981) Toxic effects of oxygen on plant tissues. Chloroplast Metabolism. Clarendon Press, Oxford

    Google Scholar 

  • Halliwell B and Gutteridge JMC (1989) Free Radicals in Biology and Medicine. Oxford University Press, Oxford

    Google Scholar 

  • Han D, Williams E and Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Hanak P and Jezek P (2001) Mitochondrial uncoupling proteins and phylogenesis-UCP4 as the ancestral uncoupling protein. FEBS Lett 495: 137–141

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J, Corpas F, Gomez M, del Rio L, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89: 103–110

    Article  CAS  Google Scholar 

  • Horling F, Koning J and Dietz K-J (2002) Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol Biochem 40: 491–499

    Article  CAS  Google Scholar 

  • Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M and Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131: 317–325

    Article  PubMed  CAS  Google Scholar 

  • Hourton-Cabassa C, Mesneau A, Miroux B, Roussaux J, Ricquier D, Zachowski A and Moreau F (2002) Alteration of plant mitochondrial proton conductance by free fatty acids. Uncoupling protein involvement. J Biol Chem 277: 41533–41538

    Article  PubMed  CAS  Google Scholar 

  • Ito K (1999) Isolation of two distinct cold-inducible cDNAs encoding uncoupling proteins from the spadix of skunk cabbage (Symplocarpus foetidus). Plant Sci 149: 167–173

    Article  CAS  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C and Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Jespersen HM, Kjaersgard IV, Ostergaard L and Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    PubMed  CAS  Google Scholar 

  • Jezek P, Engstova H, Zackova M, Vercesi AE, Costa ADT, Arruda P and Garlid KD (1998) Fatty acid cycling mecha­nism and mitochondrial uncoupling proteins. Biochim BiophysActa 1365: 319–327

    Article  CAS  Google Scholar 

  • Jimenez A, Gomez J, Navarro E and Sevilla F (2002) Changes in the antioxidative systems in mitochondria during ripening of pepper fruit. Plant Physiol Biochem 40: 515–520

    Article  CAS  Google Scholar 

  • Jimenez A, Hernandez J, Ros Barcelo A, Sandalio L, del Rio L and Sevilla F (1998) Mitochondrial and peroxisomal ascorbate peroxidase of pea leaves. Physiol Plant 104: 687–692

    Article  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, delRio LA and Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  CAS  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death. Trends Plant Sci 5: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T and Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 127–1277

    Article  Google Scholar 

  • Kiddle G, Pastori G, Bernard S, Pignocchi C, Antoniw J, Verrier P and Foyer C (2003) Effects of ascorbate signaling on defense and photosynthesis genes. Antioxid Redox Signal 5: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA and Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with dis­parate regulation and protein localization. Plant Physiol 118: 637–650

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Costa ADT and Vercesi AE (1998) Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett 425: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Kruft V, Eubel H, Jansch L, Werhahn W and Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127: 1694–1710

    Article  PubMed  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR and Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G and Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98: 14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Laloi M, Klein M, Riesmeier JW, MullerRober B, Fleury C, Bouillaud F and Ricquier D (1997) A plant cold-induced uncoupling protein. Nature 389: 135–136

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N and Lawton M (2001) Programmed cell death, mitochondria and the hypersensitive response. Nature 411: 848–853

    Article  PubMed  CAS  Google Scholar 

  • Lamb C and Dixon RA (1997) The oxidative burst in plant dis­ease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251–275

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Fiskum G and Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80: 780–787

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie S and Mcintosh L (1999) Higher plant mitochon­dria. Plant Cell 11:571–586

    PubMed  CAS  Google Scholar 

  • Maia IG, Benedetti CE, Leite A, Turcinelli SR, Vercesi AE and Arruda P (1998) AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Letters 429:403–406

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Nickels R and Mcintosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y and Mcintosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96: 8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Michalecka AM, Svensson AS and Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S and Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133: 642–652

    Article  PubMed  CAS  Google Scholar 

  • Millar A, Considine M, Day D and Whelan J (2001) Unravelling the role of mitochondria during oxidative stress in plants. IUBMB Life 51: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Millar AH and Leaver CJ (2000) The cytotoxic lipid peroxida­tion product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mito­chondria. FEBS Lett 481: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL and Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133: 443–47

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Volokita M, Guy M and Tal M (2000) Activities of SOD and the ascorbate- glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110: 42–51

    Article  CAS  Google Scholar 

  • Mittova V, Volokita M, Guy M, Theodoulou FL, Kiddle G, Foyer CH, Tal M (2004) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—A role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27: 237–250

    Article  CAS  Google Scholar 

  • Moller I (1986) Membrane-bound NAD(P)H dehydrogenases in higher plant cells. Annu Rev Plant Physiol 37: 309–334

    Article  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: elec­tron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52: 561–591

    Article  PubMed  CAS  Google Scholar 

  • Murayama S and Handa H (2000) Isolation and characterization of cDNAs encoding mitochondrial uncoupling proteins in wheat: wheat UCP genes are not regulated by low temperature. Mol Gen Genet 264: 112–118

    Article  PubMed  CAS  Google Scholar 

  • Nantes IL, Fagian MM, Catisti R, Arruda P, Maia IG and Vercesi AE (1999) Low temperature and aging-promoted expression of PUMP in potato tuber mitochondria. FEBS Letters 457: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R and Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5: 388–395

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer DD and Ferguson-Miller S (2003) Mitochondria. Releasing power for life and unleashing the machineries of death. Cell 112:481–190

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Dutilleul C, De Paepe R, Foyer C (2004) Use of mito­chondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the inte­gration of carbon/nitrogen metabolism. J Exp Biol 55: 49–57

    CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) Acorbate and glutathione: keep­ing active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249–279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L and Foyer CH (2002) Drought and oxidative load in the leaves of C-3 plants: a predominant role for photorespiration? Ann Bot 89: 841–850

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S and Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc London Ser B-Biol Sci 355: 1465–1475

    Article  CAS  Google Scholar 

  • Pastori G, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier P, Noctor G and Foyer C (2003) Vitamin C contents modulate plant defense transcripts and regulate genes con­trolling development through hormone signaling. Plant Cell 15:939–951

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM and Foyer CH (2002) Common components, net­works, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129: 460–468

    Article  PubMed  CAS  Google Scholar 

  • Popov VN, Simonian RA, Skulachev VP and Starkov AA (1997) Inhibition of the alternative oxidase stimulates H202 production in plant mitochondria. FEBS Lett 415: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Puntarulo S, Galleano M, Sanchez RA and Boveris A (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim Biophys Acta 1074: 277–283

    Article  PubMed  CAS  Google Scholar 

  • Purvis AC and Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant-tissues? Physiol Plant 88: 712–718

    Article  CAS  Google Scholar 

  • Rabilloud T, Helle M, Rogobello M-P, Bindoli A, Aebersold R and Lunardi J (2001) The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics 1: 1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Raha S and Robinson BH (2000) Mitochondria, oxygen free rad­icals, disease and ageing. Trends Biochem Sci 25: 502–508

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AG, Heiser V, Zabaleta E, Brennicke A and Grohmann L (1998) Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochim Biophys Acta 1364: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Sabre M and Scandalios JG (1990) The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol 92:375–380

    Article  PubMed  CAS  Google Scholar 

  • Ricquier D and Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345: 161–179

    Article  PubMed  CAS  Google Scholar 

  • Robson CA and Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129: 1908–1920

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y and Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127: 1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Siendones E, Gonzalez-Reyes JA, Santos-Ocana C, Navas P and Cr F (1999) Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120:907–912

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Staniek K and Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460:268–275

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove L, Heazlewood J, Herald V, Holtzapffel R, Day D, Leaver C and Millar A (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32: 891–904

    Article  PubMed  CAS  Google Scholar 

  • Takeshiga K and Minakami S (1979) NADH and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone prepara­tion. Biochem J 180: 129–135

    Google Scholar 

  • Taylor NL, Day DA and Millar AH (2002) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277: 42663–2668

    Article  PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi B and Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128: 1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Trumpower BL (1990) The protonmotive Q cycle. Energy trans­duction by coupling of proton translocation to electron transfer by the cytochrome bcl complex. J Biol Chem 265: 11409–11412

    PubMed  CAS  Google Scholar 

  • van den Bosch H, Schutgens RB, Wanders RJ and Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  • Vanlerberghe GC and Mcintosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48: 703–734

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G and Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40: 501–507

    Article  CAS  Google Scholar 

  • Vercesi AE, Martins IS, Silva MAP, Leite HMF, Cuccovia IM and Chalmovich H (1995) PUMPing plants. Nature 375: 24

    Article  CAS  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y and Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274: 19714–19722.

    Article  PubMed  CAS  Google Scholar 

  • Verniquet F, Gaillard J, Neuburger M and Douce R (1991) Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 276: 643–648

    PubMed  CAS  Google Scholar 

  • Wagner AM and Krab K (1995) The alternative respiration pathway in plants—role and regulation. Physiol Plant 95: 318–325

    Article  CAS  Google Scholar 

  • Wagner AM and Moore AL (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17: 319–333

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A and Hirai A (2002) Two uncoupling protein genes of rice (Oryza sativa L.): molecular study reveals the defects in the pre-mRNA processing for the heat-generating proteins of the subtropical cereal. Planta 215: 90–100

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Nakazono M, Tsutsumi N and Hirai A (1999) AtUCP2: a novel isoform of the mitochondrial uncoupling protein of Arabidopsis thaliana. Plant Cell Physiol 40: 1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA and Smirnoff N (1998) The biosyn-thetic pathway of vitamin C in higher plants. Nature 393: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Nickels R and Mcintosh L (2001) A genome approach to mitochondrial-nuclear communication in Arabidopsis. Plant Physiol Biochem 39: 345–353

    Article  CAS  Google Scholar 

  • Zhu D and Scandalios JG (1992) Expression of the maize MnSod (Sod3) gene in MnSOD-deflcient yeast rescues the mutant yeast under oxidative stress. Genetics 131: 803–809

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sweetlove, L.J., Foyer, C.H. (2004). Roles for Reactive Oxygen Species and Antioxidants in Plant Mitochondria. In: Day, D.A., Millar, A.H., Whelan, J. (eds) Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2400-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2400-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6651-0

  • Online ISBN: 978-1-4020-2400-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics