Skip to main content

Solute transport mechanisms in dialysis

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

The immediate goal of renal replacement therapy is to prevent accumulation of toxic solutes in the patient’s tissues by removing them from the blood. Artificial kidneys accomplish this by dialyzing and filtering the blood across semipermeable membranes, taking advantage of the natural forces of diffusion and convection. Native kidneys combine filtration at the glomerulus with selective reabsorption across the tubule. To allow movement of solute in the absence of a concentration gradient and to permit passage of water-soluble solutes through the lipid bilayers of tubular membranes, reabsorption of most solutes requires facilitated pathways. Reabsorption across native kidney tubules is therefore much more solute-specific than the relatively nonselective diffusion and convection across inert membranes of artificial kidneys, and the reabsorptive process works in reverse, conserving desirable solutes instead of removing unwanted solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gejyo F, Odani S, Yamada T et al. B2-microglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney Int. 1986;30:385–90.

    Article  PubMed  CAS  Google Scholar 

  2. Shimoyama H, Suwata J, Saitoh H et al. Changes in catecholamine level in hypotensive patients subjected to dialysis. Nippon Jinzo Gakkai Shi. 1989;31:165–70.

    PubMed  CAS  Google Scholar 

  3. Gulyassy PF, Peters JH, Lin SC, Ryan PM. Hemodialysis and plasma amino acid composition in chronic renal failure. Am J Clin Nutr. 1968;21:565–73.

    PubMed  CAS  Google Scholar 

  4. Kopple JD, Swendseid ME, Shinaberger JH, Umezawa CY. The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Intern Organs. 1973;19:309–13.

    Article  PubMed  CAS  Google Scholar 

  5. Wolfson M, Jones MR, Kopple JD. Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int. 1982;21:500–6.

    Article  PubMed  CAS  Google Scholar 

  6. Hynote ED, McCamish MA, Depner TA, Davis PA. Amino acid losses during hemodialysis: effects of high-solute flux and parenteral nutrition in acute renal failure. Parent Ent Nutr. 1995;19:15–21.

    Article  CAS  Google Scholar 

  7. Spalding EM, Chamney PW, Farrington K. Phosphate kinetics during hemodialysis: evidence for biphasic regulation. Kidney Int. 2002;61:655–7.

    Article  PubMed  CAS  Google Scholar 

  8. DeSoi CA, Umans JG. Phosphate kinetics during high-flux hemodialysis. J Am Soc Nephrol. 1993;4:1214–18.

    PubMed  CAS  Google Scholar 

  9. Krediet RT. The physiology of peritoneal solute transport and ultrafiltration. In: Textbook of Peritoneal Dialysis, 2nd edn. Gokal R, Khanna R, Krediet RT, Nolph KS, editors. Dordrecht: Kluwer, 2000:135–72.

    Google Scholar 

  10. Fick A: Ann Phys. 1855;94:59–74.

    Article  Google Scholar 

  11. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int. 1997;51:2013–17.

    Article  PubMed  CAS  Google Scholar 

  12. Ouseph R, Ward RA. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am J Kidney Dis. 2001;37:316–20.

    Article  PubMed  CAS  Google Scholar 

  13. Saha LK, Van Stone JC. Differences between KT/V measured during dialysis and KT/V predicted from manufacturer clearance data. Int J Artif Organs. 1992;15:465–9.

    PubMed  CAS  Google Scholar 

  14. Langsdorf LJ, Krankel LG, Zydney AL. Effect of blood-membrane interactions on solute clearance during hemodialysis. ASAIO J 1993;39:M767–72.

    Article  PubMed  CAS  Google Scholar 

  15. Depner TA, Greene T, Daugirdas JT, Cheung AK, Gotch FA, Leypoldt JK. Dialyzer performance in the HEMO Study: in vivo KOA and true blood flow determined from a model of cross-dialyzer urea extraction. ASAIO J. 2004 (In press).

    Google Scholar 

  16. Clark WR, Macias WL, Molitoris BA, Wang NH. Membrane adsorption of beta 2-microglobulin: equilibrium and kinetic characterization. Kidney Int. 1994;46:1140–6.

    Article  PubMed  CAS  Google Scholar 

  17. Weber C, Linsberger I, Rafiee-Tehrani M, Falkenhagen D. Permeability and adsorption capacity of dialysis membrances to lipid A. Int J Artif Organs. 1997;20:144–52.

    PubMed  CAS  Google Scholar 

  18. Bender H, Pflazel A, Saunders N, Czermak P, Catapano G, Vienken J. Membranes for endotoxin removal from dialysate: considerations on feasibility of commercial ceramic membrances. Artif Organs. 2000;24:826–9.

    Article  PubMed  CAS  Google Scholar 

  19. Botella J, Ghezzi PM, Sanz-Moreno C. Adsorption in hemodialysis. Kidney Int Suppl. 2000;76:S60–5.

    Article  PubMed  CAS  Google Scholar 

  20. Macey RI, Farmer REL. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970;211:104–6.

    Article  PubMed  CAS  Google Scholar 

  21. Mayrand RR, Levitt DG. Urea and ethylene glycol facilitated transport system in the human red cell membrane. J Gen Physiol. 1983;81:221–37.

    Article  PubMed  CAS  Google Scholar 

  22. Cheung AK, Alford MF, Wilson MM, Leypoldt JK, Henderson LW. Urea movement across erythrocyte membrane during artificial kidney treatment. Kidney Int. 1983;23: 866–9.

    Article  PubMed  CAS  Google Scholar 

  23. Macey RI, Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol. 1988; 254:C669–74.

    PubMed  CAS  Google Scholar 

  24. Kato A, Naruse M, Knepper MA, Sands JM. Long-term regulation of inner medullary collecting duct urea transport in rat. J Am Soc Nephrol. 1998;9:737–45.

    PubMed  CAS  Google Scholar 

  25. Sands JM, Timmer RT, Gunn RB. Urea transporters in kidney and erythrocytes. Am J Physiol. 1997;273:F312–39.

    Google Scholar 

  26. Black DAK, Davis HEF, Emery EW, Wade EG. Renal handling of radioactive potassium in man. Clin Sci. 1956; 15:277–85.

    PubMed  CAS  Google Scholar 

  27. Rothman JE. Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nat Med. 2002;8:1059–62.

    Article  PubMed  CAS  Google Scholar 

  28. Sargent JA, Gotch FA. Principles and biophysics of dialysis. In: Maher JF, editor. Replacement of Renal Function by Dialysis, 3rd edn. Dordrecht: Kluwer, 1989: 87–143.

    Chapter  Google Scholar 

  29. Grossmann DF, Kopp KF, Frey J. Transport of urea by erythrocytes during haemodialysis. Proc Eur Dial Transplant Assoc. 1968;4:250–3.

    Google Scholar 

  30. Colton CK, Smith KA, Merrill EW, Reece JM. Diffusion of organic solutes in stagnant plasma and erythrocyte suspensions. Chem Eng Progr Symp Ser. 1970;66:85–100.

    CAS  Google Scholar 

  31. Lim VS, Flanigan MJ, Fangman J. Effect of hematocrit on solute removal during high efficiency hemodialysis. Kidney Int. 1990;37:1557–62.

    Article  PubMed  CAS  Google Scholar 

  32. Renkin EM, Gilmore JP: Glomerular filtration. In: Orloff J, Berliner RW, editors. Handbook of Physiology — Renal Physiology. Washington, DC: American Physiology Society, 1973:185–248.

    Google Scholar 

  33. Morgera S, Klonower D, Rocktaschel J et al. TNF-alpha elimination with high cut-off haemofilters: a feasible clinical modality for septic patients? Nephrol Dial Transplant. 2003; 18:1361–9.

    Article  PubMed  Google Scholar 

  34. Colton CK, Lowrie EG. Hemodialysis: physical principles and technical considerations. In: Brenner BM, Rector FC Jr, editors. The Kidney. Philadelphia:Saunders, 1981:2425–89.

    Google Scholar 

  35. Kunas GA, Burke RA, Brierton MA, Ofsthun NJ. The effect of blood contact and reuse on the transport properties of high-flux dialysis membranes. ASAIO J. 1996;42: 288–94.

    PubMed  CAS  Google Scholar 

  36. Leypoldt JK, Cheung AK. Characterization of molecular transport in artificial kidneys. Artif Organs. 1996;20:381–9.

    Article  PubMed  CAS  Google Scholar 

  37. Morti SM, Zydney AL. Protein-membrane interactions during hemodialysis: effects on solute transport. ASAIO J. 1998;44:319–26.

    Article  PubMed  CAS  Google Scholar 

  38. Ahmad S, Callan R, Cole JJ, Blagg CR. Dialysate made from dry chemicals using citric acid increases dialysis dose. Am J Kidney Dis. 2000;35:493–9.

    Article  PubMed  CAS  Google Scholar 

  39. Seames EL, Moncrief JW, Popovich RP. A distributed model of fluid and mass transfer in peritoneal dialysis. Am J Physiol. 1990;258:R958–72.

    PubMed  CAS  Google Scholar 

  40. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 1989;35:1234–44.

    Article  PubMed  CAS  Google Scholar 

  41. Kaysen GA, Schoenfeld PY. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1984;25:107–14.

    Article  PubMed  CAS  Google Scholar 

  42. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  43. Owen WF, Jr., Lew NL, Liu Y, Lowrie EG, Lazarus JM. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med. 1993;329:1001–6.

    Article  PubMed  Google Scholar 

  44. Funck-Brentano JL, Man NK, Sausse A. Effect of more porous dialysis membranes on neuropathic toxins. Kidney Int. 1975;7:52–7.

    Google Scholar 

  45. Babb AL, Popovich RP, Christopher TG, Scribner BH. The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs. 1971;17:81–91.

    PubMed  CAS  Google Scholar 

  46. Scribner BH, Farrell PC, Milutinovic J, Babb AL. Evolution of the middle molecule hypothesis. In: Villareal H, editor. Proceedings of the Fifth International Congress of Nephrology. Basel:Karger, 1974:190–9.

    Google Scholar 

  47. Wineman RJ. Artificial kidney chronic uremia program: plans for cooperative clinical trials. Kidney Int. 1975;S2: 243–5.

    Google Scholar 

  48. Depner TA. Prescribing Hemodialysis: a Guide to Urea Modeling. Boston: Kluwer, 1991.

    Google Scholar 

  49. Schmidt M. Hemodiafiltration. In: Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, editors. Hemofiltration. New York: Springer-Verlag, 1986:266–301.

    Google Scholar 

  50. Granger A, Vantard G, Vantelon J, Perrone B. A mathematical approach of simultaneous dialysis and filtration. Proc Clin Dial Transplant Forum. 1978;5:174–7.

    Google Scholar 

  51. von Albertini B, Miller JH, Gardner PW, Shinaberger JH. High-flux hemodiafiltration: under six hours/week treatment. Trans Am Soc Artif Intern Organs. 1984;30:227–31.

    Google Scholar 

  52. Garred LJ, Canaud B, Bosc JY, Tetta C. Urea rebound and delivered Kt/V determination with a continuous urea sensor. Nephrol Dial Transplant. 1997;12:535–42.

    Article  PubMed  CAS  Google Scholar 

  53. Ward RA, Schmidt B, Hullin J, Hillebrand GF, Samtleben W. A comparison of on-line hemodiafiltration and high-flux hemodialysis: a prospective clinical study. J Am Soc Nephrol. 2000;11:2344–50.

    PubMed  CAS  Google Scholar 

  54. Colton CK, Henderson LW, Ford CA, Lysaght MJ. Kinetics of hemodiafiltration I. In vitro transport characteristics of a hollow fiber ultrafilter. J Lab Clin Med. 1975;85:355–71.

    PubMed  CAS  Google Scholar 

  55. Henderson LW. Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest. 1966;45:950–5.

    Article  PubMed  CAS  Google Scholar 

  56. Leypoldt JK, Blindauer KM. Peritoneal solvent drag reflection coefficients are within the physiological range. Blood Purif. 1994;12:327–36.

    Article  PubMed  CAS  Google Scholar 

  57. Gulyassy PF, Depner TA. Impaired binding of drugs and endogenous ligands in renal diseases. Am J Kidney Dis. 1983;2:578–601.

    PubMed  CAS  Google Scholar 

  58. Gulyassy PF, Jarrard E, Stanfel LA. Contributions of hippurate, indoxyl sulfate, and o-hydroxyhippurate to impaired ligand binding by plasma in azotemic humans. Biochem Pharmacol. 1987;36:4215–20.

    Article  PubMed  CAS  Google Scholar 

  59. Fagugli RM, de Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and proteinbound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40:339–47.

    Article  PubMed  CAS  Google Scholar 

  60. Craig WA, Evenson MA, Sarver KP, Wagnild JP. Correction of protein binding defect in uremic sera by charcoal treatment. J Lab Clin Med. 1976;87:637–47.

    PubMed  CAS  Google Scholar 

  61. Depner TA, Gulyassy PF. Plasma protein binding in uremia: extraction and characterization of an inhibitor. Kidney Int. 1980;18:86–94.

    Article  PubMed  CAS  Google Scholar 

  62. Gulyassy PF, Bottini AT, Jarrard EA, Stanfel LA. Isolation of inhibitors of ligand:albumin binding from uremic body fluids and normal urine. Kidney Int. 1983;24(Suppl. 16): S238–42.

    Google Scholar 

  63. Ott SM, Maloney NA, Coburn JW, Alfrey AC, Sherrard DJ. The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med. 1982;307:709–13.

    Article  PubMed  CAS  Google Scholar 

  64. Sherrard DJ, Andress DL. Aluminum-related osteodystrophy. Adv Intern Med. 1989;34:307–23.

    PubMed  CAS  Google Scholar 

  65. Donnelly SM, Ali MA, Churchill DN. Bioavailability of iron in hemodialysis patients treated with erythropoietin: evidence for the inhibitory role of aluminum. Am J Kidney Dis. 1990;16:447–51.

    PubMed  CAS  Google Scholar 

  66. Stange J, Mitzner S, Ramlow W, Gliesche T, Hickstein H, Schmidt R. A new procedure for the removal of protein bound drugs and toxins. ASAIO J. 1993;39:M621–5.

    Article  PubMed  CAS  Google Scholar 

  67. Mitzner SR, Stange J, Klammt S et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: results of a prospective, randomized, controlled clinical trial [see comments]. Liver Transplant. 2000;6:277–86.

    Article  CAS  Google Scholar 

  68. Depner TA. Multicompartment models. In: Prescribing Hemodialysis: a Guide to Urea Modeling. Boston: Kluwer, 1991:91–126.

    Chapter  Google Scholar 

  69. Daugirdas JT, Greene T, Depner TA, Gotch FA, Star RA. Relationship between apparent (single-pool) and true (double-pool) urea distribution volume. Kidney Int. 1999;56:1928–33.

    Article  PubMed  CAS  Google Scholar 

  70. Depner TA, Rizwan S, Cheer AY, Wagner JM, Eder LA. High venous urea concentrations in the opposite arm. A consequence of hemodialysis-induced compartment disequilibrium. ASAIO J. 1991;37:141–3.

    Google Scholar 

  71. Schneditz D, Kaufman AM, Polaschegg HD, Levin NW, Daugirdas JT. Cardiopulmonary recirculation during hemodialysis. Kidney Int. 1992;42:1450–6.

    Article  PubMed  CAS  Google Scholar 

  72. Depner T, Beck G, Daugirdas J, Kusek J, Eknoyan G. Lessons from the Hemodialysis (HEMO) Study: an improved measure of the actual hemodialysis dose. Am J Kidney Dis. 1999;33:142–9.

    Article  PubMed  CAS  Google Scholar 

  73. Daugirdas JT. Estimation of the equilibrated Kt/V using the unequilibrated post dialysis BUN. Semin Dial. 1995;8: 283–4.

    Article  Google Scholar 

  74. Tattersall JE, DeTakats D, Chamney P, Greenwood RN, Farrington K. The post-hemodialysis rebound: predicting and quantifying its effect on Kt/V. Kidney Int. 1996;50: 2094–102.

    Article  PubMed  CAS  Google Scholar 

  75. Casino FG, Lopez T. The equivalent renal urea clearance:a new parameter to assess dialysis dose. Nephrol Dial Transplant. 1996;11:1574–81.

    Article  PubMed  CAS  Google Scholar 

  76. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant. 1998;13(Suppl. 6):10–14.

    Article  PubMed  CAS  Google Scholar 

  77. Depner TA. Uremic toxicity: urea and beyond. Semin Dial. 2001;14:246–51.

    Article  PubMed  CAS  Google Scholar 

  78. Gotch FA. Kinetic modeling in hemodialysis. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical Dialysis, 3rd edn. Norwalk CT: Appleton & Lange, 1995:156–88.

    Google Scholar 

  79. Depner TA. Refinements and application of urea modeling. In:, editors. Prescribing Hemodialysis: a Guide to Urea Modeling. Boston: Kluwer, 1991:168–94.

    Google Scholar 

  80. Petitclerc T, Goux N, Reynier AL, Bene B. A model for non-invasive estimation of in vivo dialyzer performances and patient’s conductivity during hemodialysis. Int J Artif Organs. 1993;16:585–91.

    PubMed  CAS  Google Scholar 

  81. Mercadal L, Petitclerc T, Jaudon MC, Bene B, Goux N, Jacobs C. Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artif Organs. 1998;22:1005–9.

    Article  PubMed  CAS  Google Scholar 

  82. Goldau R, Kuhlmann U, Samadi N et al. Ionic dialysance measurement is urea distribution volume dependent:a new approach to better results. Artif Organs. 2002;26:321–32.

    Article  PubMed  CAS  Google Scholar 

  83. Mercadal L, Du Montcel ST, Jaudon MC et al. Ionic dialysance vs urea clearance in the absence of cardiopulmonary recirculation. Nephrol Dial Transplant. 2002;17:106–11.

    Article  PubMed  Google Scholar 

  84. Michaels AS. Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans Am Soc Artif Intern Organs. 1966;12:387–92.

    PubMed  CAS  Google Scholar 

  85. Kloppenburg WD, Stegeman CA, de Jong PE, Huisman RM. Anthropometry-based equations overestimate the urea distribution volume in hemodialysis patients. Kidney Int. 2001;59:1165–74.

    Article  PubMed  CAS  Google Scholar 

  86. Pastan S, Gassensmith C. Total body water measured by bioelectrical impedance in patients after hemodialysis. Comparison with urea kinetics. ASAIO J. 1992;38:M186–9.

    Article  PubMed  CAS  Google Scholar 

  87. Depner TA, Wagner JM, Cheer AY. Low urea distribution volumes in stable hemodialyzed patients. J Am Soc Nephrol. 1992;3:362, (abstract).

    Google Scholar 

  88. Depner TA, Cheer A. Modeling urea kinetics with two vs. three BUN measurements. A critical comparison. ASAIO J. 1989;35:499–502.

    Article  CAS  Google Scholar 

  89. Borah MF, Schoenfeld PY, Gotch FA, Sargent JA, Wolfson M, Humphreys MH. Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int. 1978; 14:491–500.

    Article  PubMed  CAS  Google Scholar 

  90. Cottini EP, Gallina DK, Dominguez JM. Urea excretion in adult humans with varying degrees of kidney malfunction fed milk, egg, or an amino acid mixture: assessment of nitrogen balance. J Nutr. 1973;103:11–21.

    PubMed  CAS  Google Scholar 

  91. van Ypersele DS, Jadoul M, Garbar C. Morphogenesis of joint beta 2-microglobulin amyloid deposits. Nephrol Dial Transplant. 2001;16(Suppl. 4):3–7.

    Google Scholar 

  92. Jadoul M, Garbar C, van Ypersele DS. Pathological aspects of beta(2)-microglobulin amyloidosis. Semin Dial. 2001; 14:86–9.

    Article  PubMed  CAS  Google Scholar 

  93. Peters JH, Gotch FA, Keen M, Berridge BJ Jr, Chao WR. Investigation of the clearance and generation rate of endogenous peptides in normal subjects and uremic patients. Trans Am Soc Artif Intern Organs. 1974;20:417.

    PubMed  Google Scholar 

  94. Leypoldt JK, Cheung AK, Deeter RB. Single compartment models for evaluating beta 2-microglobulin clearance during hemodialysis. ASAIO J. 1997;43:904–9.

    Article  PubMed  CAS  Google Scholar 

  95. Leypoldt JK, Cheung AK, Deeter RB. Rebound kinetics of beta2-microglobulin after hemodialysis. Kidney Int. 1999; 56:1571–7.

    Article  PubMed  CAS  Google Scholar 

  96. Cheung AK, Agodoa LY, Daugirdas JT et al. Effects of hemodialyzer reuse on clearances of urea and beta2-microglobulin. The Hemodialysis (HEMO) Study Group. J Am Soc Nephrol. 1999;10:117–27.

    PubMed  CAS  Google Scholar 

  97. Kaplan AA, Halley SE, Lapkin RA, Graeber CW. Dialysate protein losses with bleach processed polysulphone dialyzers. Kidney Int. 1995;47:573–8.

    Article  PubMed  CAS  Google Scholar 

  98. Eknoyan G, Beck GJ, Cheung AK et al. Effect of dialysis dose and membrane flux on mortality and morbidity in chronic hemodialysis patients:primary results of the HEMO study. N Engl J Med. 2002;347:2010–19.

    Article  PubMed  Google Scholar 

  99. Locatelli F, Andrulli S, D ’Amico M. Evaluation of dialysis outcomes: experimental versus observational evidence. J Nephrol. 2001;14(Suppl. 4):S101–8.

    PubMed  Google Scholar 

  100. Singh B, Depner TA. Catheter related bacterial infections mimic reactions to exogenous pyrogens during hemodialysis. ASAIO J. 1994;40:M674–7.

    Article  PubMed  CAS  Google Scholar 

  101. Soltys PJ, Zydney A, Leypoldt JK, Henderson LW, Ofsthun NJ. Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis. Kidney Int. 2000; 58:818–28.

    Article  PubMed  CAS  Google Scholar 

  102. Smith HW. From Fish to Philosopher: the story of our internal environment. Boston: Little, Brown, 1953.

    Google Scholar 

  103. Kolff WJ, Berk HTJ, ter Welle M, van der Ley AJW, van Dijk EC, van Noordwijk J. The artificial kidney, a dialyzer with a great area. Acta Med Scand. 1944;117:121–8.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Depner, T., Garred, L. (2004). Solute transport mechanisms in dialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics