Skip to main content

Principles and Biophysics of Dialysis

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

Intermittent dialysis therapy is used in chronic uremia to re-establish body water solute concentrations that cannot be achieved by the natural organ. In this sense, the dialyzer becomes an artificial kidney and it is through the transport of substances by this device that chemical and biophysical control consistent with continued survival is achieved. This chapter is organized as shown in Figure 1 and consists of two basic lines of development:

  1. 1.

    Consideration of the dialyzer and its operating principles.

  2. 2.

    Application of mass balance priciples to various solute systems and the effect of dialyzer use on solute control during intermittent dialysis theraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michaels AS: Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans Am Soc Artif Intern Organs 12: 387, 1966

    PubMed  CAS  Google Scholar 

  2. Gotch FA, Autian J, Colton CK, Ginn HE, Lipps BJ, Lowrie EG: The Evaluation of Hemodialyzers DHEW publication No (NIH) 72–103, 1971–1972

    Google Scholar 

  3. Klein E, Autian J, Bower JD, Buffaloe G, Centella L, Colton CK, Darby TD, Farrell PC, Holland FF, Kennedy RS, Lipps B Jr, Mason R, Nolph KD, Villarroel F, Wathen RL: Evaluation of Hemodialyzers and Dialysis Membranes DHEW Publication No (NIH) 77–1294, 1977

    Google Scholar 

  4. Guyton AC: Textbook of Medical Physiology Philadelphia, WB Saunders, 6th edition, 1981, p 208

    Google Scholar 

  5. Babb AL, Popovich RP, Christopher TG, Scribner BH: The genesis of the square meter-hour hypothesis.Trans Am Soc Artif Intern Organs 17: 81, 1971

    PubMed  CAS  Google Scholar 

  6. Klein E: Membranes and materials evaluation. Proc 7th Annu Contractors’ Conf Artif Kidney-Chronic Uremia Program NIAMDD edited by Krueger KK, DHEW publ no (NIH) 75–248: 85, 1974

    Google Scholar 

  7. Gotch FA, Sargent JA, Keen ML, Seid MA, Foster R: Comparative treatment time with Kiil, Gambro and Cordis-Dow Kidneys. Proc Clin Dial Transplant Forum 3: 217, 1973

    PubMed  CAS  Google Scholar 

  8. Comroe JH: Physiology of Respiration Chicago, Year Book Medical Publishers, 2nd edition, 1975, p 60

    Google Scholar 

  9. Pitts RF: Physiology of the Kidney and Body Fluids Chicago, Year Book Medical Publishers, 2nd edition, 1968, p 29

    Google Scholar 

  10. Sargent JA, Gotch FA: Bicarbonate and carbon dioxide transport during dialysis therapy,asaio J 2: 61, 1979

    Google Scholar 

  11. Farrell PC, Grib NL, Fry DL, Popovich RP, Broviac JW, Babb AL: A comparison of in vitro and in vivo solutes - protein binding interactions in normal and uremic subjects. Trans Am Soc Artif Intern Organs 18: 268, 1972

    PubMed  CAS  Google Scholar 

  12. Wolf AV, Remp DG, Killey JE, Currie GD: Artificial kidney function: Kinetics of hemodialysis.J Clin Invest 30:1062, 1951

    Article  PubMed  CAS  Google Scholar 

  13. Smith HW: The Kidney: Structure and Function in Health and Disease New York, Oxford University Press, 1951, p 39

    Google Scholar 

  14. Gotch FA: Hemodialysis: Technique and kinetic considerations. in The Kidney edited by Brenner BM, Rector FC Jr, Philadelphia, WB Saunders Company, 1976, p 1673

    Google Scholar 

  15. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW: Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined phase I and phase II clinical trial. N Engl J Med 316: 73, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Erslev A: Erythropoietin coming of age. N Engl J Med 316: 101, 1987

    Article  PubMed  CAS  Google Scholar 

  17. Nolph KD, Nothum RJ, Mäher JF: Effects of ultrafiltration on dialysance in commercially available coils.Kidney Int 2: 293, 1972

    Article  PubMed  CAS  Google Scholar 

  18. Nolph KD, Nothum RJ, Maher JF: Ultrafiltration: A mechanism for removal of intermediate molecular weight substances in coil dialyzers. Kidney Int 6: 55, 1974

    Article  PubMed  CAS  Google Scholar 

  19. Farrell PC, Babb AL: Estimation of the permeability of cellulosic membranes from solute dimensions and diffusivities. J Biomed Mater Res 7: 25, 1973

    Article  Google Scholar 

  20. Bottomley S, Parsons FM, Broughton PMG: The dialysis of non-electrolytes through regenerated cellulose (Cuprophane). I. The effect of molecular size: J Appl Polym Sci 16: 2115, 1972

    Article  CAS  Google Scholar 

  21. Babb AL, Farrell PC, Uvelli DA, Scribner BH: Hemodialyzer evaluation by examination of solute molelcular spectra. Trans Am Soc Artif Intern Organs 18: 98, 1972

    PubMed  CAS  Google Scholar 

  22. Popovich RP, Hlavinka DJ, Bomar JB, Monerief JW, Dechard JF: The consequences of physiological resistances on metabolic removal from the patient - artificial kidney system. Trans Am Soc Artif Intern Organs 21: 108, 1975

    PubMed  CAS  Google Scholar 

  23. French D: The Schardinger dextrins. Adv Carbohydrate Chem 12: 189, 1957

    CAS  Google Scholar 

  24. Schreiner GE: The search for the uremic toxin(s). Kidney Int 7 (Suppl 3): S270, 1975

    Google Scholar 

  25. Horowitz HI: Uremic toxins and platelet function. Arch Intern Med 127: 823, 1970

    Article  Google Scholar 

  26. Cohen BD: Guanidinosuccinic acid in uremia. Arch Intern Med 126: 846, 1970

    Article  CAS  Google Scholar 

  27. Giovannetti S, Biagini M, Cioni L: Evidence that methyl guanidine is retained in chronic renal failure. Experientia 24: 341, 1968

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt EG, McElvian NS, Bowen J J: Plasma amino acids and the ether soluble phenols in uremia. Am J Clin Path 20: 253, 1950

    PubMed  CAS  Google Scholar 

  29. Gordon A, Bergström J, Fürst P, Zimmerman L: Separation and characterization of uremic metabolites in biologic fluids: A screening approach to the definition of uremic toxins. Kidney Int 7(Suppl 3): S45, 1975

    Google Scholar 

  30. Giovanetti S, Barsotti G: Dialysis of methylguanidine. Kidney Int 6: 111, 1974

    Google Scholar 

  31. Fürst P, Bergström J, Gordon A, Johnsson E, Zimmerman L: Separation of peptides of ’middle’ molecular weight from biological fluids of patients with uremia. Kidney Int 7(Suppl 3): S272, 1975

    Google Scholar 

  32. Funck-Brentano J, Man NK, Sausse A, Zingraff J, Boudet J, Becker A, Cueiile GF: Characterization of a 1100–1300 MW uremic neurotoxin.Trans Am Soc Artif Intern Organs 22: 163, 1976

    PubMed  CAS  Google Scholar 

  33. Bergström J, Fürst P, Zimmerman L: Uremic middle molecules exist and are biologically active. Clin Nephrol 11: 229, 1979

    PubMed  Google Scholar 

  34. Bergström J, Fürst P: Uremic toxins.Kidney Int 12(Suppl 8): S9, 1978

    Google Scholar 

  35. Asaba H, Bergström J, Fürst P, Oules R, Zimmerman L: Accumulation and excretion of middle molecules. Proc Eur Dial Transplant Assoc 13: 481, 1976

    Google Scholar 

  36. Asaba H, Fürst P, Oules R, Ward M, Yahiel V, Zimmerman L, Bergström J: The effect of hemodialysis on endogenous middle molecules in uremic patients. Clin Nephrol 11: 257, 1979

    PubMed  CAS  Google Scholar 

  37. Babb AL, Strand MJ, Uvelli DA, Milutinovic J, Scribner BH: Quantitative description of dialysis treatment: A dialysis index. Kidney Int7 (Suppl 2): S23, 1975

    Google Scholar 

  38. Babb AL, Strand MJ, Uvelli DA, Scribner BH: The dialysis index: A practical guide to dialysis treatment. Dial Transplant 6: 9, 1977

    Google Scholar 

  39. Bell RL, Curtis FK, Babb AL: Analog simulation of the patient- artificial kidnev system. Trans Am Soc Artif Intern Organs 11: 183, 1965

    PubMed  CAS  Google Scholar 

  40. King PH, Baker WR, Ginn HE, Frost AB: Computer optimization of hemodialysis. Trans Am Soc Artif Intern Organs 14: 389, 1968

    PubMed  CAS  Google Scholar 

  41. Dedrick RL: Pharmacodynamic considerations for chronic hemodialysis. Kidney Int 7(Suppl 2): S-7, 1975

    Google Scholar 

  42. Sargent JA, Gotch FA: The analysis of concentration dependence of uremic lesions in clinical studies. Kidney Int 7(Suppl 2): S35, 1975

    Google Scholar 

  43. Gotch FA, Sargent JA, Keen MI, Lee M: Individualized quantified dialysis therapy of uremia.Proc Clin Dial Transplant Forum 4: 27, 1974

    PubMed  Google Scholar 

  44. Gotch FA, Farrell PC and Sargent JA: Theoretical considerations of molecular transport in dialysis and sorbent therapy for uremia.J Dial 1: 105, 1976

    PubMed  Google Scholar 

  45. Frost TH, Kerr DNS: Kinetics of hemodialysis: A theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int 12: 41, 1977

    Article  PubMed  CAS  Google Scholar 

  46. Sargent JA: Kinetic modeling in the guidance of dialysis therapy Dial Transplant 8: 1101, 1979

    Google Scholar 

  47. Sargent JA, Gotch FA: Mathematical modelling of dialysis therapy. Kidney Int 18(Suppl 10): S-2, 1980

    Google Scholar 

  48. Sargent J A, Which mathematical model to guide clinical dialysis in Uremia - Pathobiology of Patients Treated for Ten Years Or More Giordano C, Friedman EA, Milan, Wichtig Editore, 1980, p 209, Milano

    Google Scholar 

  49. Sargent JA, Lowrie EG: Which mathematical model to study uremic toxicity? Clin Nephrol 17: 303, 1982

    PubMed  CAS  Google Scholar 

  50. Borah MF, Schoenfeld PY, Gotch FA, Sargent JA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491, 1978

    Article  PubMed  CAS  Google Scholar 

  51. Sargent JA, Gotch FA, Borah M, Piercy L, Spinozzi N, Schoenfeld P, Humphreys M: Urea kinetics: A guide to nutritional management of renal failure. Am J Clin Nutr 31:1696, 1978

    PubMed  CAS  Google Scholar 

  52. Cogan MG, Sargent JA, Yarbrough SG, Vincenti F, Amend WJ: Prevention of prednisone-induced negative nitrogen balance. Ann Intern Med 95: 158, 1981

    PubMed  CAS  Google Scholar 

  53. Gotch FA, Sargent JA, Keen ML, Lam M, Prowitt M, Grady M: Clinical results of intermittent dialysis therapy (IDT) guided by ongoing kinetic analysis or urea metabolism. Trans Am Soc Artif Intern Organs 22: 175, 1976

    PubMed  CAS  Google Scholar 

  54. Sargent JA: Urea kinetics: A quantitative guide to nutrition and treatment in renal disease.Dial Transplant 10: 275, 1981

    Google Scholar 

  55. Sargent JA:The Role of Acetate in Acid Base Corrections during Hemodialysis Treatment Doctoral dissertation, University of California, Berkeley, 1976.

    Google Scholar 

  56. Gotch FA, Keen ML: Precise control of minimal heparinization for high bleeding risk hemodialysis.Trans Am Soc Artif Intern Organs 23: 168, 1977

    PubMed  CAS  Google Scholar 

  57. Sherlock JE, Yoon Y, Ledwith JW, Letteri JM: Respiratory gas exchange during hemodialysis. Proc Clin Dial Transplant Forum 2: 171, 1972

    PubMed  CAS  Google Scholar 

  58. Sherlock JE, Ledwith JW, Letteri JM: Hypoventilation and hypoxemia during hemodialysis: reflex response to removal of CO2 across the dialyzer. Trans Am Soc Artif Intern Organs 23: 406, 1977

    PubMed  CAS  Google Scholar 

  59. Aurigemma NM, Feldman NT, Gottlieb M, Ingram RH, Lazarus JM, Lowrie EG: Arterial oxygenation during hemodialysis. N Engl J Med 297: 871, 1977

    Article  PubMed  CAS  Google Scholar 

  60. Tolchin N, Rogers JL, Hayashi J, Lewis EJ: Metabolic consequences of high mass-transfer hemodialysis. Kidney Int 11: 366, 1977

    Article  PubMed  CAS  Google Scholar 

  61. Tolchin N, Roberts JL, Lewis EJ: Respiratory gas exchange by high efficiency hemodialysis. Nephron 21: 137, 1978

    Article  PubMed  CAS  Google Scholar 

  62. Guyton AC, Textbook of Medical Physiology. Philadelphia WB Saunders, 6th edition, 1981, p 518

    Google Scholar 

  63. Kreyszig E, Advanced Engineering Mathematics New York, John Wiley and Sons, 1972, p 24–147

    Google Scholar 

  64. Sokolnikoff IS, Redheffer RM: Mathematics of Physics and Modern Engineering New York, McGraw Hill, 1958, p 23, 756

    Google Scholar 

  65. Giovanetti S, Maggiore Q: A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet 1: 1000, 1964

    Article  Google Scholar 

  66. Shaw AB, Bazzard FJ, Booth EM, Nilwarangkur S, Berlyne GM: The treatment of chronic renal failure by modified Giovannetti diet. Q J Med 34: 237, 1965

    PubMed  CAS  Google Scholar 

  67. Kerr DNR, Robson A, Elliott RW, Ashcroft R: Diet in chronic renal failure. Proc Roy Soc Med 60: 115, 1967

    PubMed  CAS  Google Scholar 

  68. Franklin SS, Gordon A, Kleeman CR, Maxwell MH: Use of a balanced low-protein diet in chronic renal failure. JAMA 202: 477, 1967

    Article  PubMed  CAS  Google Scholar 

  69. Kopple JD, Sorensen MK, Coburn JW, Gordon A, Rubini ME: Controlled comparison of 20g and 40g protein diets in the treatment of chronic uremia. Am J Clin Nutr 21: 553, 1968

    PubMed  CAS  Google Scholar 

  70. Hewlett AW, Gilbert QO, Wickett AD: The toxic effects of urea on normal individuals. Arch Intern Med 18: 636, 1916

    CAS  Google Scholar 

  71. Grollman EF, Grollman A: Toxicity of urea and its role in the pathogenesis of uremia. J Clin Invest 38: 749, 1959

    Article  PubMed  CAS  Google Scholar 

  72. Cohen BD, Handelsman DG, Narayan Pai B: Toxicity arising from the urea cycle. Kidney Int7 (Suppl 3): S285, 1975

    Google Scholar 

  73. Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW: Toxicity arising from urea. Kidney Int 7(Suppl 3): S288, 1975

    Google Scholar 

  74. Lowrie EG, Laird NM, Parker TF, Sargent JA: Effect of the Hemodialysis prescription on patient morbidity: Report from the national cooperative dialysis study. N Engl J Med 305: 1176, 1981

    Article  PubMed  CAS  Google Scholar 

  75. Luke RG: Uremia and the BUN. N Engl J Med 305: 1213, 1981

    Article  PubMed  CAS  Google Scholar 

  76. Lowrie EG, Laird NM, Henry RP: Protocol for the national cooperative dialysis study, Kidney Int 23(Suppl 13): S11, 1983

    Google Scholar 

  77. Laird NM, Berkey CS, Lowrie EG: Modeling success or failure of dialysis therapy: The national cooperative dialysis study. Kidney Int 23(Suppl 13): S101, 1983

    Google Scholar 

  78. Gotch FA, Sargent JA: A Mechanistic analysis of the national cooperative dialysis study (NCDS). Kidney Int 28: 526, 1985

    Article  PubMed  CAS  Google Scholar 

  79. Steffenson KA: Some determinations of the total body water in man by means of intravenous injections of urea. Acta Physiol Scand 13: 282, 1947

    Google Scholar 

  80. Lehnnger AL: Biochemistry, New York, Worth Publishers, 1970,p 433

    Google Scholar 

  81. Sargent JA, Gotch FA: Is urea generation adaptive? Controv Nephrol 1: 451, 1979

    Google Scholar 

  82. Walser M, Bodenlos LJ: Urea metabolism in man. J Clin Invest 38: 1617, 1959

    Article  PubMed  CAS  Google Scholar 

  83. Wolpert E, Phillips SF, Summerskill WHJ: Transport or urea and ammonia production in the human colon. Lancet 2, 1387, 1971

    Article  PubMed  CAS  Google Scholar 

  84. Richards P, Brown CL: Urea metabolism in an azotemic woman with normal renal function.Lancet 2 207, 1975

    Article  PubMed  CAS  Google Scholar 

  85. Blumenkrantz MJ, Kopple JD, Moran JK, Grodstein GP, Coburn JW: Nitrogen and urea metabolism during continuous ambulatory peritoneal dialysis.Kidney Int 20: 78, 1981

    Article  PubMed  CAS  Google Scholar 

  86. Berlyne GM, Shaw AB, Nilwaramgkur S: Dietary treatment of chronic renal failure. Experience with a modified Giovanetti diet. Nephron 2: 129, 1965

    Article  PubMed  CAS  Google Scholar 

  87. Walser M: The conservative management of the uremic patient. in The Kidney edited by Brenner BM, Rector FC, Philadelphia, WB Saunders Co, 1976, p 1613

    Google Scholar 

  88. Bennett N: Urea kinetics: A dietitian’s clinical tool in the nutritional management of patients with end stage renal disease. Dial Transplant 10: 332, 1981

    Google Scholar 

  89. Forbes G, Bruining GJ: Urinary creatinine excretion and lean body mass. Am J Clin Nutr 29: 1359, 1976

    PubMed  CAS  Google Scholar 

  90. Sargent JA, Gotch FA: Mass balance: A quantitative guide to clinical nutritional therapy I: The predialysis renal disease patient. J Am Dietetic Assoc 75, 547, 1979

    CAS  Google Scholar 

  91. Sargent JA: Assessing the utility and improving the effectiveness of nutritional support.Nutr Clin Prac 1: 29, 1986

    Google Scholar 

  92. Kopple JD, Coburn JW: Evaluation of chronic uremia. Importance of serum urea nitrogen, serum creatinine, and their ratio. JAMA 227: 41, 1974

    Article  PubMed  CAS  Google Scholar 

  93. Rutherford WE, Blondin J, Miller JP, Greenwalt AS, Vavra JD: Chronic progressive renal disease: Rate of change of serum creatinine concentration. Kidney Int 11: 62, 1977

    Article  PubMed  CAS  Google Scholar 

  94. Sargent JA: Control of dialysis by a single-pool urea model; the national cooperative dialysis study. Kidney Int 23(Suppl 13): S2, 1983

    Google Scholar 

  95. Cestero RVM, Thunberg B, Jain VK: Diagnostic value of modeled therapy: nutritional status and technical problems of treatment. Dial Transplant 10: 302, 1981

    Google Scholar 

  96. Acchiardo SR, Moore LW: Urea kinetics: The possibility of selectively reduced treatment frequency. Dial Transplant 10: 295, 1981

    Google Scholar 

  97. Collins A, Keshaviah P, Berkseth R, Ilstrup K, McMichael C, Ebben J: Short efficient hemodialysis with reduced symptoms. Kidney Int 27: 158, 1985

    Google Scholar 

  98. Keshaviah P, Collins A: Rapid high-efficiency bicarbonate hemodialysis.Trans Am Soc Artif Intern Organs 32: 17, 1986

    CAS  Google Scholar 

  99. Heineken FG, Evans MC, Keen ML, Gotch FA: Intercom- partmental fluid shifts in hemodialysis patients. Biotechnol Progr 3: 2, 1987

    Article  Google Scholar 

  100. Shackman R, Chisholm GD, Holden AJ, Pigott RW: Urea distribution in the body after haemodialysis. Br Med J 2: 355, 1962

    Article  PubMed  CAS  Google Scholar 

  101. Wathen R, Keshaviah P, Hommeyer R, Cadwell K, Comty C: Role of dialysate glucose in preventing gluconeogenesis during hemodialysis.Trans Am Soc Artif Intern Organs 23: 393, 1977

    PubMed  CAS  Google Scholar 

  102. Wathen RL, Keshaviah P, Hommeyer P, Cadwell K, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate.Am J Clin Nutr 31: 1870, 1978

    PubMed  CAS  Google Scholar 

  103. Farrell PC, Hone PW: Dialysis induced catabolism. Am J Clin Nutr 33: 1417, 1980

    PubMed  CAS  Google Scholar 

  104. Wineman RJ, Sargent JA, Piercy L: Nutritional implications of renal disease, II. The dietitian’s key role in studies of dialysis therapy. J Am Diet Assoc 70: 483, 1977

    PubMed  CAS  Google Scholar 

  105. Sargent JA, Gotch FA, Henry RA, Bennett N: Mass balance: a quantitative guide to clinical nutritional therapy. J Am Diet Assoc 75:551, 1979

    PubMed  CAS  Google Scholar 

  106. Olsson P, Lagergen H, Er S: The elimination from plasma of intravenous heparin. Acta Med Scand 173: 619, 1963

    Article  PubMed  CAS  Google Scholar 

  107. Eiber HB, Danishefsky I, Borelli JJ: Studies with radioactive heparin in humans. Angiology 2: 40, 1960

    Article  Google Scholar 

  108. Estes JW: The kinetics of heparin. Ann N Y Acad Sci 179:187, 1971

    Article  PubMed  CAS  Google Scholar 

  109. Christensen HN: General concepts of neutrality regulation. Am J Surg 103: 286, 1962

    Article  PubMed  CAS  Google Scholar 

  110. Christensen HN:Diagnostic Biochemistry: Quantitative Distribution of Body Constituents and their Physiological Interpretation. New York, Oxford University Press, 1959, p 122

    Google Scholar 

  111. Isaksson B: Urinary nitrogen output as a validity test in dietary surveys. Am J Clin Nutr 33: 4, 1980

    PubMed  CAS  Google Scholar 

  112. Gotch FA, Sargent JA: Measurement of H+ balance during acetete and biocarbonate dialysis therapy. Kidney Int 16: 887, 1979

    Google Scholar 

  113. Relman AS, Schwartz WB: The effects of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 24: 540, 1952

    PubMed  CAS  Google Scholar 

  114. Schwartz WB, Jenson RL, Relman AS: The disposition of acid administered to sodium - depleted subjects: the renal response and the role of the whole body buffers. J Clin Invest 33: 587, 1954

    Article  PubMed  CAS  Google Scholar 

  115. Schwartz WB, Orning KJ, Porter R: The internal distribution of hydrogen ions with varying degrees of metabolic acidosis.J Clin Invest 36: 373, 1957

    Article  PubMed  CAS  Google Scholar 

  116. Hunt JH: The influence of dietary sulfur on the urinary output of acid in man. Clin Sci 5: 119, 1956

    Google Scholar 

  117. Mion CM, Hegstrom RM, Boen ST, Scribner BH: Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs 10: 110, 1964

    PubMed  CAS  Google Scholar 

  118. Grimsrud L, Cole JJ, Lehman GA, Babb AL, Scribner BH: A central system for the continuous preparation and distribution of hemodialysis fluid. Trans Am Soc Artif Intern Organs, 10: 107, 1964

    PubMed  CAS  Google Scholar 

  119. Sargent JA, Gotch FA, Lam MA, Prowitt M, Keen ML: Technical aspects of on line proportioning of bicarbonate dialysate,Proc Clin Dial Transplant Forum 7: 109, 1977

    PubMed  CAS  Google Scholar 

  120. Krebs HA: The biochemical lesions in ketosis. Arch Intern Med 107: 119, 1961

    Google Scholar 

  121. Lundquist F: Production and utilization of free acetate in man. Nature 193: 579, 1962

    Article  PubMed  CAS  Google Scholar 

  122. Kaiser BA, Potter DE, Bryant RE, Vreman HJ, Weiner MW: Acid-base changes and acetate metabolism during routine and high-efficiency hemodialysis in children. Kidney Int 19: 70, 1981

    Article  PubMed  CAS  Google Scholar 

  123. Swan RC, Pitts RF: Neutralization of infused acid by neph- rectomized dogs. J Clin Invest 34: 205, 1955

    Article  PubMed  CAS  Google Scholar 

  124. Gotch FA, Borah MF, Keen ML, Lam MA, Provitt M, Sargent JA: The solute kinetics of intermittent dialysis therapy. Third Annual Report of Artificial Kidney Chronic Uremia Program NIAMDD 1977, p 48

    Google Scholar 

  125. Garella S, Dana CL, Chazan JA: Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med 289: 121, 1973

    Article  PubMed  CAS  Google Scholar 

  126. Dombec DH, Klein E, Wendt RP: Evaluation of two pool model for predicting serum creatinine levels during intra and interdialytic periods. Trans Am Soc Artif Intern Organs 21: 117, 1975

    Google Scholar 

  127. Sanfelippo ML, Hall DA, Walker WE, Swenson RS: Quantitative evaluation of hemodialysis therapy using a simple mathematical model and a programmable pocket calculator. Trans Am Soc Artif Intern Organs 21: 125, 1975

    PubMed  CAS  Google Scholar 

  128. Katz MA, Hull AR: Transcellular creatinine disequilibrium and its significance in hemodialysis. Nephron 12: 171, 1974

    Article  PubMed  CAS  Google Scholar 

  129. Jones JD, Burnett PC: Implication of creatinine and gut flora in the uremic syndrome: Induction of ’creatinine’ in colon contents of the rat by dietary creatinine. Clin Chem 18: 280, 1972

    PubMed  CAS  Google Scholar 

  130. Jones JD, Burnett PC: Creatinine metabolism in humans with decreased renal function: creatinine deficit. Clin Chem 20: 1204, 1974

    PubMed  CAS  Google Scholar 

  131. Mitch WE, Walser M: A proposed mechanism for reduced creatinine excretion in severe chronic renal failure. Nephron 21: 248, 1978

    Article  PubMed  CAS  Google Scholar 

  132. Wehle B, Asaba H, Castenfors J, Fürst P, Grahn A, Gunnarson B, Shaldon S, Berström J: The influence of dialysis fluid composition on the blood pressure response during dialysis. Clin Nephrol 10: 62, 1978

    PubMed  CAS  Google Scholar 

  133. Ogden DA: A double crossover comparison of high and low sodium dialysis. Proc Clin Dial Transplant Forum 8:157, 1978

    PubMed  CAS  Google Scholar 

  134. Van Stone JC, Cook J: Decreased postdialysis fatigue with increased dialysate sodium concentration. Proc Clin Dial Transplant Forum 8: 152, 1978

    PubMed  Google Scholar 

  135. Quellhorst D, Reiger J, Doht B, Beckman H, Jacob I, Kraft B, Mietzsch G, Scheler F: Treatment of chronic uraemia by an ultrafiltration kidney - first clinical experience. Proc Eur Dial Transplant Assoc 13: 314, 1976

    Google Scholar 

  136. Maekawa M, Kishimoto T, Ohyama T, Tanaka H: Present status of hemofiltration and hemodiafiltration in Japan. Artif Organs 4: 85, 1980

    Article  PubMed  CAS  Google Scholar 

  137. Kakagwa S: Multifactorial evaluation of hemofiltration therapy in comparison with conventional hemodialysis. Artif Organs 4: 94, 1980

    Article  Google Scholar 

  138. Streicher E, Schneider H: Clinical experience in hemofiltration. Int J Artif Organs 3: 221, 1980

    PubMed  CAS  Google Scholar 

  139. Schneider H, Streicher D, Hachmann H, Chmiel H, von Mylius U: Clinical experience with haemofiltration. Proc Eur Dial Transplant Assoc 14:136, 1977

    PubMed  CAS  Google Scholar 

  140. Baldamus CA, Knobloch M, Schoeppe W, Koch KM: Hemodialysis/hemofiltration. A report of a controlled cross-over study. Int J Artif Organs 3: 211, 1980

    PubMed  CAS  Google Scholar 

  141. Shaldon S, Beau MC, Claret G, Deschodt G, Oules R, Ramperez P, Mion H, Mion C: Haemofiltration with sorbent regeneration of ultrafiltrate: first clinical experience in end stage renal disease. Proc Eur Dial Transplant Assoc 15: 220, 1978

    PubMed  CAS  Google Scholar 

  142. Shaldon S, Deschodt G, Beau MC, Claret G, Mion H, Mion C: Vascular stability during high flux haemofiltration (HF). Proc Eur Dial Transplant Assoc 16: 695, 1979

    PubMed  CAS  Google Scholar 

  143. Shaldon S, Beau MC, Deschodt G, Ramperez P, Mion C: Vascular stability during hemofiltration. Trans Am Soc Artif Intern Organs 26: 391, 1980

    PubMed  CAS  Google Scholar 

  144. Baldamus CA, Ernst W, Fassbinder W, Koch KM: Differing haemodynamic stability due to differing sympathetic response: comparison of ultrafiltration, haemodialysis and haemofiltration. Proc Eur Dial Transplant Assoc 17: 205, 1980

    PubMed  CAS  Google Scholar 

  145. Shaldon S, Beau MC, Deschodt G, Flavier JL, Gullberg CA, Ramperez P, Mion C: Two years clinical experience with short hour high efficiency haemofiltration (HF). Abstracts Clin Dial Transplant Forum p. 52, 1980

    Google Scholar 

  146. Quellhorst E. Schuenemann B, Hildebrand U, Falda Z: Response of the vascular system to different modification of haemofiltration and haemodialysis. Proc Eur Dial Transplant Assoc 17: 197, 1980

    PubMed  CAS  Google Scholar 

  147. Ladenson JH: Direct Potentiometrie analysis of sodium and potassium in human plasma: Evidence for electrolyte interaction with a non protein, protein-associated substance (S). J Lab Clin Med 90: 654, 1977

    PubMed  CAS  Google Scholar 

  148. Shyr C, Young CC: Effect of sample protein concentration on results of analysis for sodium and potassium in serum. Clin Chem 26: 1517, 1980

    PubMed  CAS  Google Scholar 

  149. Coleman RL: Differences in electrolyte results as measured by direct potentiometry (ISE) and flame photometry. Bulletin from Nova Biomedical, Newton, MA

    Google Scholar 

  150. Gotch FA, Evans MC, Keen ML: Measurement of the effective dialyzer Na diffusion gradient in vitro and in vivo. Trans Am Soc Artif Intern Organs 31: 354, 1985

    PubMed  CAS  Google Scholar 

  151. Flannery JM: Differences in electrolyte results as measured by direct potentiometry (ion selective electrode) and flame photometry. Bulletin from Nova Biomedical, Newton, MA

    Google Scholar 

  152. Bijster P, Vader HL, Vink CLJ: An evaluation of the Corning 902 direct Potentiometrie sodium/potassium analyzer. J Automatic Chem 4: 125, 1982

    Article  CAS  Google Scholar 

  153. Aluer A, Belledonne M, Saeiaggi A, Glabman S, Bosch J: Sodium fluxes during hemodialysis. Trans Am Soc Artif Intern Organs 29: 684, 1983

    Google Scholar 

  154. Nolph KD, Stoltz ML, Carter CB, Fox M, Mäher JF: Factors affecting the composition of ultrafiltrate from hemodialysis coils.Trans Am Soc Artif Intern Organs 16: 495, 1970

    PubMed  CAS  Google Scholar 

  155. Shinaberger JH, Brautbar N, Miller JH, Gardner PN: Successful application of sequential hemofiltration followed by diffusion dialysis with standard dialysis equipment. Trans Am Soc Artif Intern Organs 24: 677, 1978

    PubMed  CAS  Google Scholar 

  156. Flear CTG, Bhattacharya SS, Sung CM: Solute and water exchanges between cells and extracellular fluids in health and disturbances after trauma. J Pen J Parenter Enteral Nutr 4: 98, 1980

    Article  CAS  Google Scholar 

  157. Maffly RH: The body fluids: Volume, composition, and physical chemistry, in The Kidney edited by Brenner BM, Rector FC, Philadelphia, WB Saunders Co, 1976, p 65

    Google Scholar 

  158. Edelman IS, Leibman J: Anatomy of body water and electrolytes. Am J Med 27: 256, 1959

    Article  PubMed  CAS  Google Scholar 

  159. Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW: Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 37: 1236, 1958

    Article  PubMed  CAS  Google Scholar 

  160. Feig PU, Shook A, Sterns RH: Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron 27: 25–30, 1981

    Article  PubMed  CAS  Google Scholar 

  161. Feig PU, Pring M, Guzzo J, Singer I: Disposition of intravenous potassium in anuric man: A kinetic analysis. Kidney Int. 15: 651–660, 1979

    Article  PubMed  Google Scholar 

  162. Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls Handbook of Physiology, Section II, Circulation, Volume 22, Washington DC, Am Physiol Soc, 1963,p 961

    Google Scholar 

  163. Maeda K, Saito A, Kawaguchi S: Hemodiafiltration with sodium concentration-controlled dialysate. Artif Organs 4: 121, 1980

    Article  PubMed  CAS  Google Scholar 

  164. Keen M, Evans M, Gotch FA: Comparison of morbidity in high flux dialysis (HFD) and conventional dialysis (CD). Kidney Int 31 235, 1987

    Google Scholar 

  165. Acchiardo S, Burk L, Bannister D: High-flux (HF) hemodialysis (HD).Kidney Int 31: 226, 1987

    Google Scholar 

  166. Kjellstrand CM, Rosa AA, Shideman JR: Hypotension during hemodialysis: osmolality fall is an important pathogenetic factor. asaio J 3: 11, 1980

    Google Scholar 

  167. Heinrich EL, Woodard TD, Blackley JD, Gomez-Sanchez C, Pettinger W, Cronin RE: Role of osmolality in blood pressure stability after dialysis and ultrafiltration. Kidney Int 18: 480, 1980

    Article  Google Scholar 

  168. DiRaimondo C, Stone W: AB2M amyoidosis. Int J Artif Organs 10: 281, 1987

    CAS  Google Scholar 

  169. Sethi D, Gower P: Synocial fluid B2-M levels in dialysis arthropathy. New Engl J Med 315: 1419, 1986

    Article  PubMed  CAS  Google Scholar 

  170. Gejyo F, Odani S, Yamada R, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y, Suzuki M, Arakawa M: B2-microglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney Int 30: 385, 1986

    Article  PubMed  CAS  Google Scholar 

  171. Gorevic P, Munoz P, Casey T: Polymerization of intact B2/ microglobulin in tissue cases amuloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci USA 83: 7908, 1986

    Article  PubMed  CAS  Google Scholar 

  172. Kachel H, Altmeyer P, Baldamus C, Koch K: Deposition of amyloid-like substance as a possible complication of regular dialysis treatment.Contrib Nephrol 36: 127, 1983

    PubMed  CAS  Google Scholar 

  173. Ogawa H, Saito A, Hirabayashi N, Hara K: Amyloid deposition in systemic organs in long-term hemodialysis patients. Clin Nephrol 28: 199, 1987

    PubMed  CAS  Google Scholar 

  174. Messmer RP, B2-microglobulin: an old molecule assumes a new look. J Lab Clin Med 104: 141, 1984

    Google Scholar 

  175. Vincent C, Pozet N, Revillard J: Plasma B2-microglobulin turnover in renal insufficiency. Acta Clin Belg 35(Suppl 10): 1, 1980

    Google Scholar 

  176. Karlsson F, Groth T, Sege K, Wibell L, Peterson P: Turnover in humans of B2-microgolulin: The constant chain of HLA- antigens.Eur J Clin Invest 10: 293, 1980

    Article  PubMed  CAS  Google Scholar 

  177. Schardijn G, Statius Van Eps L: B2-microglobulin: Its significance in the evaluation of renal function. Kidney Int 32: 635, 1987

    Article  PubMed  CAS  Google Scholar 

  178. Cresswell P, Springer T, Strominger JL, Turner MJ, Grey HM, Kubo RT: Immunological identity of the small subunit of HLA antigens and B2-microglobulin and its turnover on the cell membrane.Proc Nat Acid Sci USA 71: 2123, 1974

    Article  CAS  Google Scholar 

  179. Statius Van Eps L, Schardijn G: B2-microglobulin and the renal tubule, in Non- Invasive Diagnosis of Kidney Disease edited by Lubec G, Basel, Karger, 1983, p 103

    Google Scholar 

  180. Bhalla R, Safai B, Mertelsmann R, Schwartz MK: Abnormally high concentrations of B2-M in acquired immunodeficiency syndrome (AIDS) patients. Clin Chem 29: 1560, 1983

    PubMed  CAS  Google Scholar 

  181. Bergström J, Wehle B: No change in corrected B2-M concentration after cuprophane hemodialysis. Lancet 1: 628, 1987

    Article  PubMed  Google Scholar 

  182. Shaldon S, Koch KM, Dinarello CA, Colton CK, Knudsen PJ, Floege J, Granolleras C: B2-microglobulin and haemodialysis. Lancet 1: 925, 1987

    Article  Google Scholar 

  183. Mahiout A, Ludat K, Schultze G: Alteration of blood osmolality induces a shift of B2-M plasma levels in patients undergoing hemodialysis. Nephrol Dial Transplant 2: 448, 1987

    Google Scholar 

  184. Geiyo F, Homma N, Suziki Y, Arakawa M: Serum levels of Beta-2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 314: 585, 1986

    Article  Google Scholar 

  185. Burzynski SR: Biologically active peptides in human urine: I. Isolation of a group of medium size peptides. Physiol Chem Physics 5: 437, 1973

    CAS  Google Scholar 

  186. Scribner BH, Babb AL: Evidence for toxins of middle molecular weight. Kidney Int 7(Suppl 3): S349, 1975

    Google Scholar 

  187. Shinaberger JH, Miller JH, Rosenblatt MG, Gardner PW, Carpenter GW, Martin FE: Clinical studies of ’low flow’ dialysis with membranes highly permeable to middle weight molecules. Trans Am Soc Artif Intern Organs 18: 82, 1972

    PubMed  CAS  Google Scholar 

  188. Rattazzi T, Wathen R, Comty C, Raij L, Leonard A, Shapiro F: The comparison of low flow (Qd200) to regular flow (Qd500) dialysis. Trans Am Soc Artif Intern Organs, 20: 402, 1974

    Google Scholar 

  189. Ginn HE, Teschan PE, Walker PJ, Bourne JR, Macalyne F, Ward JW, McLain LW, Johnson HB, Hamel B: Neurotoxicity in uremia. Kidney Int 7 (suppl 3): S357, 1975

    Google Scholar 

  190. Tenckhoff H, Curtis FK: Experience with maintenance peritoneal dialysis in the home. Trans Am Soc Artif Intern Organs 16: 90, 1970

    PubMed  CAS  Google Scholar 

  191. Gotch FA: A quantitative evaluation of small and middle molecule toxicity in therapy of uremia.Dial Transplant 9:183, 1980

    Google Scholar 

  192. Gotch FA, Sargent J A, Modelling of middle molecules in clinical studies. Symposium on present status and future orientation of middle molecules in uremia and other diseases. Artif Organs 4 133, 1980

    Google Scholar 

  193. Henderson LW, Stone RA, Ford CA, Lysagth MJ: Blood pressure control with hemodiafiltration. Proc 10th Annu Contractors: Conf Artif Kidney - Chronic Uremia Program NIAMDD, DHEW Publication No. (NIH) 77–1442, 1977, p 110

    Google Scholar 

  194. Funck-Brentano JL, Man NK, Sausse A, Cueille G, Zingraff J, Drueke T, Jungers P, Billon JP: Neuropathy and ’middle’ molecule toxins. Kidney Int 7(Suppl 3): S352, 1975

    Google Scholar 

  195. Gulyassy PRF, Peters JH, Lin SC, Ryan PM: Hemodialysis and plasma amino acid composition in chronic renal failure. Am J Clin Nutr 21: 565, 1968

    PubMed  CAS  Google Scholar 

  196. Bartsch HJ: Handbook of Mathematical Formulas Translated by Liebscher H, New York, Academic Press, 1974, p 139

    Google Scholar 

  197. Cottini ERP, Gallina DK, Dominguez JE: Urea excretion in adult humans with varying degrees of kidney malfunction fed milk, egg or an amino acid mixture: Assessment of nitrogen balance. J Nutr 103: 11, 1973

    PubMed  CAS  Google Scholar 

  198. Bleiler RE, Schedl HP: Creatinine excretion: variability in relationship to diet and body size. J Lab Clin Med 59: 945, 1962

    PubMed  CAS  Google Scholar 

  199. Harmon WE, Spinozzi N, Meyer A, Grupe WE: Use of protein catabolic rate to monitor pediatric hemodialysis. Dial Transplant 10: 324, 1981

    Google Scholar 

  200. Sargent JA, Gotch FA: Nutrition and treatment of the acutely ill patient using urea kinetics.Dial Transplant 10: 314, 1981

    Google Scholar 

  201. Sargent JA: Urea mass balance: Nutrition and treatment of the acutely ill patient. Nutr Support Services 2:2, 1982

    Google Scholar 

  202. Cuthbertson DP: The metabolic response to injury and its nutritional implications: retrospect and prospect. JPET J Parenter Enteral Nutr 3: 1078, 1979

    Google Scholar 

  203. Long JM, Wilmore DW, Mason AD: Effect of carbohydrate and fat intake on nitrogen excretion during total intravenous feeding.Ann Surg 185: 417, 1977

    Article  PubMed  CAS  Google Scholar 

  204. Clowes GHA Jr, O’Donnell TF Jr, Blackburn GL, et al: Energy metabolism and proteolysis in traumatized and septic man. Surg Clin North Am 56: 1169, 1976

    PubMed  CAS  Google Scholar 

  205. Clowes GHA Jr, O’Donnell TF Jr, Ryan NT: Energy metabolism in sepsis: treatment based on different patterns in shock and high output stage. Ann Surg 179: 684, 1974

    Article  PubMed  Google Scholar 

  206. Wolfe BM, Culebras JM, Sim AJW, Ball MR, Moore FD: Substrate interaction in intravenous feeding: comparative effects of carbohydrate and fat on amino acid ultilization in fasting man. Ann Surg 186: 518, 1977

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sargent, J.A., Gotch, F.A. (1989). Principles and Biophysics of Dialysis. In: Maher, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1087-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1087-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6979-3

  • Online ISBN: 978-94-009-1087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics