Skip to main content

Optimized Method of 3D Scaffold Seeding, Cell Cultivation, and Monitoring Cell Status for Bone Tissue Engineering

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

Abstract

The cultivation of cells in 3D systems is commonly regarded to be more physiological than in 2D as it comes much closer to the natural situation in tissues in many different aspects. However, 3D cell culture is much more complex. Cells within the pores of a printed 3D scaffold face a special situation concerning cell-material interaction and cell adhesion, cell proliferation, and supply of medium and oxygen into the core of the scaffolds. Biological assays (for cell proliferation, viability, and activity) have been validated primarily for 2D cell cultures and need to be adapted for 3D cultures. Likewise, in imaging, a number of points need to be taken into account in order to get a clear picture of the cells in 3D scaffolds, preferably with the method of multiphoton microscopy. Here, we describe a method for pretreatment and cell seeding of porous inorganic composite scaffolds (α-TCP/HA) for bone tissue engineering and for cultivation of the cell-scaffold constructs. The analytical methods described are the cell proliferation assay and the ALP activity assay. A step-by-step protocol is provided here that safely tackles typical difficulties that arise with this 3D cell-scaffold setting. In addition, MPM imaging of cells is described both with and without labeling. The combination of biochemical assays and imaging provides valuable insights into the possibilities of analysis with this 3D cell-scaffold system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  CAS  Google Scholar 

  2. Pontes Soares C, Midlej V, Weschollek de Oliveira ME, Benchimol M, Costa ML, Mermelstein C (2012) 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS One 7:e38147. https://doi.org/10.1371/journal.pone.0038147

    Article  CAS  PubMed  Google Scholar 

  3. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. In: Haycock JW (ed) Methods in molecular biology. Springer Science+Business Media, pp 1–15. https://doi.org/10.1007/978-1-60761-984-0_1

    Chapter  Google Scholar 

  4. Duval K, Grover H, Han L, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs 3D cell culture. Physiology 32:266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang YK, Chen CS (2013) Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J Cell Mol Med 17:823–832. https://doi.org/10.1111/jcmm.12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Infante A, Rodríguez CI (2018) Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res Ther 9:244. https://doi.org/10.1186/s13287-018-0995-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue Engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reichert J, Hutmacher D (2011) Bone tissue engineering. In: Pallua N, Suscheck CV (eds) Tissue engineering: from Lab to Clinic. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 431–456. https://doi.org/10.1007/978-3-642-02824-3_21

    Chapter  Google Scholar 

  9. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. https://doi.org/10.1038/NMETH818

    Article  CAS  PubMed  Google Scholar 

  10. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226. https://doi.org/10.1111/j.1365-2818.2011.03532.x

    Article  CAS  PubMed  Google Scholar 

  11. Yeh AT, Gibbs H, Hu J-J, Larson AM (2008) Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture. Tissue Eng Part B Rev 14:119–131. https://doi.org/10.1089/teb.2007.0284

    Article  CAS  PubMed  Google Scholar 

  12. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. PNAS 99:11014–11019. https://doi.org/10.1073?pnas.172368799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langenbach F, Handschel J (2013) Effects of dexamethasone, ascorbic acid and β -glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4:117. https://doi.org/10.1186/scrt328

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kodama S, Amagai H, Sudo Y, Yamamoto H (1981) Establishment of a clonal osteogenic cell line from newborn mouse calvaria. J Oral Biosci 23:899–901

    Google Scholar 

  15. Hettich G, Schierjott RA, Epple M, Gbureck U, Heinemann S, Mozaffari-Jovein H, Grupp TM (2019) Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity. Materials (Basel) 12:3471. https://doi.org/10.3390/ma12213471

    Article  CAS  PubMed  Google Scholar 

  16. Klein A, Baranowski A, Ritz U, Götz H, Heinemann S, Mattyasovszky S, Rommens PM, Hofmann A (2018) Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J Biomed Mater Res B Appl Biomater 106:1–11. https://doi.org/10.1002/jbm.b.34073

    Article  CAS  Google Scholar 

  17. Lode A, Meissner K, Luo Y, Sonntag F, Glorius S, Nies B, Vater C, Despang F, Hanke T, Gelinsky M (2014) Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J Tissue Eng Regen Med 9:682–693. https://doi.org/10.1002/term.1563

    Article  CAS  Google Scholar 

  18. Ahlfeld T, Lode A, Richter RF, Pradel W, Franke A, Rauner M, Stadlinger B, Lauer G, Gelinsky M, Korn P (2021) Toward biofabrication of resorbable implants consisting of a calcium phosphate cement and fibrin—a characterization in vitro and in vivo. Int J Mol Sci 22:1218. https://doi.org/10.3390/ijms22031218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245. https://doi.org/10.1039/c4bm00291a

    Article  CAS  PubMed  Google Scholar 

  20. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse Calvaria. J Cell Biol 96:191–198. https://doi.org/10.1083/jcb.96.1.191

    Article  CAS  PubMed  Google Scholar 

  21. Peterson WJ, Tachiki KH, Yamaguchi DT (2004) Serial passage of MC3T3-E1 cells down-regulates proliferation during osteogenesis in vitro. Cell Prolif 37:325–336. https://doi.org/10.1111/j.1365-2184.2004.00316.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung CY, Iida-klein A, Wyatt LE, Rudkin GH, Ishida K, Yamaguchi DT, Miller TA (1999) Serial passage of MC3T3-E1 cells alters osteoblastic function and responsiveness to transforming growth factor-β1 and bone morphogenetic protein-2. Biochem Biophys Res Commun 265:246–251

    Article  CAS  PubMed  Google Scholar 

  23. Choi J, Lee B-H, Song K, Park R, Kim I, Sohn K, Jo J-S, Ryoo H-M (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 61:609–618. https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4%3C609::AID-JCB15%3E3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Sascha Heinemann (Innotere GmbH, Radebeul, Germany) for discussions on α-TCP/HA scaffolds.

This work was funded by the Deutsche Forschungsgemeinschaft (grant numbers VI 770/3-1 (M.V.), FR 2993/25-1 (O.F.), and TRR 225 “Biofabrication” (project 326998133, subproject Z02) (O.F.)). We acknowledge ongoing support through the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vielreicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krolinski, A., Sommer, K., Wiesner, J., Friedrich, O., Vielreicher, M. (2023). Optimized Method of 3D Scaffold Seeding, Cell Cultivation, and Monitoring Cell Status for Bone Tissue Engineering. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics