Skip to main content

Protein–Protein Interactions in Abiotic Stress Signaling: An Overview of Biochemical and Biophysical Methods of Characterization

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2642))

Abstract

The identification and characterization of bona fide abiotic stress signaling proteins can occur at different levels of the complete in vivo signaling cascade or network. Knowledge of a particular abiotic stress signaling protein could theoretically lead to the characterization of complete networks through the analysis of unknown proteins that interact with the previously known protein. Such signaling proteins of interest can indeed be experimentally used as bait proteins to catch interacting prey proteins, provided that the association of bait proteins and prey proteins should yield a biochemical or biophysical signal that can be detected. To this end, several biochemical and biophysical techniques are available to provide experimental evidence for specific protein–protein interactions, such as co-immunoprecipitation, bimolecular fluorescence complementation, tandem affinity purification coupled to mass spectrometry, yeast two hybrid, protein microarrays, Förster resonance energy transfer, or fluorescence correlation spectroscopy. This array of methods can be implemented to establish the biochemical reality of putative protein–protein interactions between two proteins of interest or to identify previously unknown partners related to an initially known protein of interest. The ultimate validity of these methods however depends on the in vitro/in vivo nature of the approach and on the heterologous/homologous context of the analysis. This chapter will review the application and success of some classical methods of protein–protein interaction analysis in the field of plant abiotic stress signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kato H, Onai K, Abe A et al (2020) Lumi-map, a real-time Luciferase bioluminescence screen of mutants combined with MutMap, reveals Arabidopsis genes involved in PAMP-triggered immunity. Mol Plant Microbe Interact 33:1366–1380. https://doi.org/10.1094/MPMI-05-20-0118-TA

  2. Zhang H, Zhu J, Gong Z et al (2022a) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119. https://doi.org/10.1038/s41576-021-00413-0

    Article  CAS  PubMed  Google Scholar 

  3. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee SC, Lan W, Buchanan BB et al (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U S A 106:21419–21424. https://doi.org/10.1073/pnas.0910601106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Shu D, Tan Z et al (2022) The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. New Phytol 236:929–942. https://doi.org/10.1111/nph.18381

  6. Tang Y, Dong Q, Wang T et al (2022) PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Dev Cell 57:19–31. https://doi.org/10.1016/j.devcel.2021.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Bücherl CA, Bader A, Westphal AH et al (2014) FRET-FLIM applications in plant systems. Protoplasma 251:383–394. https://doi.org/10.1007/s00709-013-0595-7

    Article  CAS  PubMed  Google Scholar 

  8. Strotmann VI, Stahl Y (2022) Visualization of in vivo protein-protein interactions. J Exp Bot 73:3866–3880. https://doi.org/10.1093/jxb/erac139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Struk S, Jacobs A, Sánchez Martín-Fontecha E et al (2019) Exploring the protein–protein interaction landscape in plants. Plant Cell Environ 42:387–409. https://doi.org/10.1111/pce.13433

    Article  CAS  PubMed  Google Scholar 

  10. Hayes S, Malacrida B, Kiely M et al (2016) Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans 44(4):994–1004. https://doi.org/10.1042/BST20160092

    Article  CAS  PubMed  Google Scholar 

  11. Kamiyoshihara Y, Achiha Y, Ishikawa S et al (2022) Heteromeric interactions of ripening-related ethylene receptors in tomato fruit. J Exp Bot 73:6773-6783. https://doi.org/10.1093/jxb/erac314

  12. Somssich M, Ma Q, Weidtkamp-Peters S et al (2015) Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci Signal 8:ra76. https://doi.org/10.1126/scisignal.aab0598

    Article  CAS  PubMed  Google Scholar 

  13. Duan Z, Li K, Duan W et al (2022) Probing membrane protein interactions and signaling molecule homeostasis in plants by Förster resonance energy transfer analysis. J Exp Bot 73:68–77. https://doi.org/10.1093/jxb/erab445

    Article  CAS  PubMed  Google Scholar 

  14. Shane E, Hossain MI, Moller IE et al (2015) SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J 82:183–192. https://doi.org/10.1111/tpj.12813

    Article  CAS  Google Scholar 

  15. Kikuchi S, Asakura Y, Imai M et al (2018) A Ycf2-FtsHi Heteromeric AAA-ATPase complex is required for chloroplast protein import. Plant Cell 30:2677–2703. https://doi.org/10.1105/tpc.18.00357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun Z, Feng Z, Ding Y et al (2022) RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol Plant 15:1192–1210. https://doi.org/10.1016/j.molp.2022.06.001

    Article  CAS  PubMed  Google Scholar 

  17. Xu K, Zhao Y, Zhao Y et al (2022) Soybean F-Box-Like protein GmFBL144 interacts with small heat shock protein and negatively regulates plant drought stress tolerance. Front Plant Sci 13:823529. https://doi.org/10.3389/fpls.2022.823529

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li D, Liu C, Shen L et al (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120. https://doi.org/10.1016/j.devcel.2008.05.002

    Article  PubMed  Google Scholar 

  19. Miao R, Lung SC, Li X et al (2019) Thermodynamic insights into an interaction between ACYL-CoA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. J Biol Chem 294:6214–6226. https://doi.org/10.1074/jbc.RA118.006876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gruber H, Heijde M, Heller W et al (2010) Negative feedback regulation of UV‐B‐induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 107:20132–20137. https://doi.org/10.1073/pnas.0914532107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487. https://doi.org/10.1146/annurev.biophys.37.032807.125842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minner-Meinen R, Weber JN, Albrecht A et al (2021) Split-HaloTag imaging assay for sophisticated microscopy of protein–protein interactions in planta. Plant Comm 2:100212. https://doi.org/10.1016/j.xplc.2021.100212

    Article  CAS  Google Scholar 

  23. Kwaaitall M, Keinath NF, Pajonk S et al (2010) Combined bimolecular fluorescence complementation and Förster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152:1135–1147. https://doi.org/10.1104/pp.109.151142

    Article  CAS  Google Scholar 

  24. Yang L, Gao C, Jiang L (2022) Leucine-rich repeat receptor-like protein kinase AtORPK1 promotes oxidative stress resistance in an AtORPK1-AtKAPP mediated module in Arabidopsis. Plant Sci 315:111147. https://doi.org/10.1016/j.plantsci.2021.111147

    Article  CAS  PubMed  Google Scholar 

  25. Giri J, Vij S, Dansana PK et al (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732. https://doi.org/10.1111/j.1469-8137.2011.03740.x

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Xing J, Qiu Z et al (2016) Quantification of membrane protein dynamics and interactions in plant cells by fluorescence correlation spectroscopy. Mol Plant 9:1229–1239. https://doi.org/10.1016/j.molp.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  27. Clark NM, Hinde E, Winter CM et al (2016) Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. elife 5:e14770. https://doi.org/10.7554/eLife.14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hink MA, Shah K, Russinova E et al (2008) Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor‐like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94:1052–1062. https://doi.org/10.1529/biophysj.107.112003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Wang X, Yang Y et al (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797. https://doi.org/10.1105/tpc.111.091454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hao H, Fan L, Chen T et al (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26:1729–1745. https://doi.org/10.1105/tpc.113.122358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rawat N, Singla-Pareek SL, Pareek A (2021) Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol Plant 171:653–676. https://doi.org/10.1111/ppl.13217

    Article  CAS  PubMed  Google Scholar 

  32. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  33. Brückner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mo C, Wan S, Xia Y et al (2018) Expression patterns and identified protein-protein interactions suggest that Cassava CBL-CIPK signal networks function in responses to abiotic stresses. Front Plant Sci 9:269. https://doi.org/10.3389/fpls.2018.00269

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ehlert A, Weltmeier F, Wang X et al (2006) Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900. https://doi.org/10.1111/j.1365-313X.2006.02731.x

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, Wen Z, Zhang D et al (2021) Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Commun 2:100137. https://doi.org/10.1016/j.xplc.2020.100137

    Article  CAS  PubMed  Google Scholar 

  37. Zhang K, Li Y, Huang T et al (2022b) Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress. Front Plant Sci 13:974598. https://doi.org/10.3389/fpls.2022.974598

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  39. Popescu SC, Popescu GV, Bachan S et al (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104:4730–4735. https://doi.org/10.1073/pnas.0611615104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Safi A, Smagghe W, Gonçalves A et al (2022) Phase separation-based visualization of protein-protein interactions and kinase activities in plants. bioRxiv preprint. https://doi.org/10.1101/2022.09.06.506782

  41. Watanabe T, Seki T, Fukano T et al (2017) Genetic visualization of protein interactions harnessing liquid phase transitions. Sci Rep 7:46380. https://doi.org/10.1038/srep46380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjee S, Mitra D (2020) Structural basis of design and engineering for advanced plant optogenetics. Trends Plant Sci 25:35–65. https://doi.org/10.1016/j.tplants.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Winkler J, Mylle E, De Meyer A et al (2021) Visualizing protein–protein interactions in plants by rapamycin-dependent delocalization. Plant Cell 33:1101–1117. https://doi.org/10.1093/plcell/koab004

    Article  PubMed  Google Scholar 

  44. Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22(10):1317–1321. https://doi.org/10.1038/nbt1018

    Article  CAS  PubMed  Google Scholar 

  45. Ding Z, Kihara D (2018) Computational methods for predicting protein-protein interactions using various protein features. Curr Protoc Protein Sci 93(1):e62. https://doi.org/10.1002/cpps.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang X, Yang S, Qi H et al (2020) PlaPPISite: a comprehensive resource for plant protein-protein interaction sites. BMC Plant Biol 20:61. https://doi.org/10.1186/s12870-020-2254-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu G, Wu A, Xu XJ et al (2016) PPIM: a protein-protein interaction database for maize. Plant Physiol 170(2):618–626. https://doi.org/10.1104/pp.15.01821

    Article  CAS  PubMed  Google Scholar 

  48. Jamsheer KM, Awasthi P, Laxmi A (2022) The social network of target of rapamycin complex 1 in plants. J Exp Bot 73(20):7026-7040. https://doi.org/10.1093/jxb/erac278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Couée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Couée, I., Gouesbet, G. (2023). Protein–Protein Interactions in Abiotic Stress Signaling: An Overview of Biochemical and Biophysical Methods of Characterization. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics