Skip to main content

Single-Molecule Mapping of Chromatin Accessibility Using NOMe-seq/dSMF

  • Protocol
  • First Online:
Chromatin Accessibility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2611))

Abstract

The bulk of gene expression regulation in most organisms is accomplished through the action of transcription factors (TFs) on cis-regulatory elements (CREs). In eukaryotes, these CREs are generally characterized by nucleosomal depletion and thus higher physical accessibility of DNA. Many methods exploit this property to map regions of high average accessibility, and thus putative active CREs, in bulk. However, these techniques do not provide information about coordinated patterns of accessibility along the same DNA molecule, nor do they map the absolute levels of occupancy/accessibility. SMF (Single-Molecule Footprinting) fills these gaps by leveraging recombinant DNA cytosine methyltransferases (MTase) to mark accessible locations on individual DNA molecules. In this chapter, we discuss current methods and important considerations for performing SMF experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  PubMed  Google Scholar 

  2. Mikkelsen TS, Ku M, Jaffe DB et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buenrostro JD, Giresi PG, Zaba LC et al. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crawford GE, Holt IE, Whittle J et al. (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyle AP, Davis S, Shulha HP et al. (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schones DE, Cui K, Cuddapah S et al. (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898

    Article  CAS  PubMed  Google Scholar 

  7. Kelly TK, Liu Y, Lay FD et al. (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22:2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krebs AR, Imanci D, Hoerner L, Gaidatzis D et al. (2017) Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Mol Cell 67:411–422.e4

    Google Scholar 

  9. Kuhn RM, Haussler D, Kent WJ (2013) The UCSC genome browser and associated tools. Brief Bioinform 14:144–161

    Article  CAS  PubMed  Google Scholar 

  10. Kent WJ, Zweig AS, Barber G et al. (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17(1):10–12

    Google Scholar 

  13. Pedersen BS, Eyring K, De S et al. (2014) Fast and accurate alignment of long bisulfite-seq reads. arXiv 1401.1129

    Google Scholar 

  14. Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  15. SÖnmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schübeler D, Benes V, Molina N, Krebs AR (2021) Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol Cell 81(2):255–267.e6

    Google Scholar 

  16. Corces MR, Trevino AE, Hamilton EG et al. (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14:959–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4(7):e1000138

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Greenleaf, Bintu and Kundaje labs for many helpful discussions. This work was supported by NIH grants (P50HG007735, RO1 HG008140, U19AI057266, and UM1HG009442 to W.J.G., 1UM1HG009436 to W.J.G. and A.K., 1DP2OD022870-01 and 1U01HG009431 to A.K., and HG006827 to C.H.), the Rita Allen Foundation (to W.J.G.), the Baxter Foundation Faculty Scholar Grant, and the Human Frontiers Science Program grant RGY006S (to W.J.G). W.J.G is a Chan Zuckerberg Biohub investigator and acknowledges grants 2017-174468 and 2018-182817 from the Chan Zuckerberg Initiative. Fellowship support provided by the Stanford School of Medicine Dean’s Fellowship (G.K.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaela Hinks or William J. Greenleaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hinks, M., Marinov, G.K., Kundaje, A., Bintu, L., Greenleaf, W.J. (2023). Single-Molecule Mapping of Chromatin Accessibility Using NOMe-seq/dSMF. In: Marinov, G.K., Greenleaf, W.J. (eds) Chromatin Accessibility. Methods in Molecular Biology, vol 2611. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2899-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2899-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2898-0

  • Online ISBN: 978-1-0716-2899-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics