Skip to main content

Analyses of Promoter , Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq

  • Protocol
  • First Online:
Enhancers and Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2351))

Abstract

MNase-Seq is a genome-wide procedure that allows mapping of DNA associated to nucleosomes following micrococcal nuclease digestion. It is a rapid and robust technology useful for the analysis of chromatin properties genome-wide at the resolution of mono-nucleosomes. Here, we describe how to produce high-resolution nucleosome maps of cells grown in suspension or adherent mammalian cells. After only three steps: nuclei or cell preparation, native MNase digestion and DNA purification, libraries for high-throughput sequencing can be prepared. Genome-wide nucleosome maps allow analyzing chromatin opening at promoters or enhancers, nucleosome displacement, or labile nucleosome occupancy depending on the digestion condition used. As presented, MNase-Seq is a versatile tool for investigating chromatin dynamics, regulation, and to define open chromatin regions of regulatory elements in mammalian genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson R, Sandelin A (2020) Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 21(2):71–87. https://doi.org/10.1038/s41576-019-0173-8

    Article  CAS  PubMed  Google Scholar 

  2. Lonfat N, Montavon T, Darbellay F, Gitto S, Duboule D (2014) Convergent evolution of complex regulatory landscapes and pleiotropy at Hox loci. Science 346(6212):1004–1006. https://doi.org/10.1126/science.1257493

    Article  CAS  PubMed  Google Scholar 

  3. Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025. https://doi.org/10.1016/j.cell.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459

    Article  CAS  PubMed  Google Scholar 

  5. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. https://doi.org/10.1038/nrg2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13(4):233–245. https://doi.org/10.1038/nrg3163

    Article  CAS  PubMed  Google Scholar 

  7. Lay FD, Liu Y, Kelly TK, Witt H, Farnham PJ, Jones PA, Berman BP (2015) The role of DNA methylation in directing the functional organization of the cancer epigenome. Genome Res 25(4):467–477. https://doi.org/10.1101/gr.183368.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esnault C, Gualdrini F, Horswell S, Kelly G, Stewart A, East P, Matthews N, Treisman R (2017) ERK-induced activation of TCF family of SRF cofactors initiates a chromatin modification cascade associated with transcription. Mol Cell 65(6):1081–1095.e1085. https://doi.org/10.1016/j.molcel.2017.02.005

    Article  CAS  Google Scholar 

  9. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138(6):1122–1136. https://doi.org/10.1016/j.cell.2009.07.031

    Article  CAS  PubMed  Google Scholar 

  10. Fenouil R, Cauchy P, Koch F, Descostes N, Cabeza JZ, Innocenti C, Ferrier P, Spicuglia S, Gut M, Gut I, Andrau JC (2012) CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 22(12):2399–2408. https://doi.org/10.1101/gr.138776.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41(8):941–945. https://doi.org/10.1038/ng.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15(11):709–721. https://doi.org/10.1038/nrg3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. https://doi.org/10.1016/j.cell.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474(7352):516–520. https://doi.org/10.1038/nature10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Hofer T, Rippe K (2014) Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res 24(8):1285–1295. https://doi.org/10.1101/gr.164418.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 7:11485. https://doi.org/10.1038/ncomms11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH, Zaret KS (2016) The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell 62(1):79–91. https://doi.org/10.1016/j.molcel.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fenouil R, Descostes N, Spinelli L, Koch F, Maqbool MA, Benoukraf T, Cauchy P, Innocenti C, Ferrier P, Andrau JC (2016) Pasha: a versatile R package for piling chromatin HTS data. Bioinformatics 32(16):2528–2530. https://doi.org/10.1093/bioinformatics/btw206

    Article  CAS  PubMed  Google Scholar 

  19. Teves SS, Henikoff S (2011) Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 25(22):2387–2397. https://doi.org/10.1101/gad.178079.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR, ANR-18-CE12-0020) and the CNRS-UMR 5535 Institut de Génétique Moléculaire de Montpellier.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cyril Esnault or Jean-Christophe Andrau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Esnault, C., Magat, T., García-Oliver, E., Andrau, JC. (2021). Analyses of Promoter , Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq. In: Borggrefe, T., Giaimo, B.D. (eds) Enhancers and Promoters. Methods in Molecular Biology, vol 2351. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1597-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1597-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1596-6

  • Online ISBN: 978-1-0716-1597-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics