Skip to main content

RNA 3D Structure Comparison Using RNA-Puzzles Toolkit

  • Protocol
  • First Online:
RNA Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2586))

Abstract

Computational modeling of RNA three-dimensional (3D) structure may help in unrevealing the molecular mechanisms of RNA molecules and in designing molecules with novel functions. An unbiased blind assessment to benchmark the computational modeling is required to understand the achievements and bottlenecks of the prediction, while a standard structure comparison protocol is necessary. RNA-Puzzles is a community-wide effort on the assessment of blind prediction of RNA tertiary structures. And RNA-Puzzles toolkit is a computational resource derived from RNA-Puzzles, which includes (i) decoy sets generated by different RNA 3D structure prediction methods; (ii) 3D structure normalization, analysis, manipulation, and visualization tools; and (iii) 3D structure comparison metric tools. In this chapter, we illustrate a standard RNA 3D structure prediction assessment protocol using the selected tools from RNA-Puzzles toolkit: rna-tools and RNA_assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strobel EJ, Watters KE, Loughrey D, Lucks JB (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr Opin Biotechnol 39:182–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharp PA (2009) The centrality of RNA. Cell 136:577–580

    Article  CAS  PubMed  Google Scholar 

  3. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  4. Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3:eaao2110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luco RF, Misteli T (2011) More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev 21:366–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  8. Al-Hashimi HM, Walter NG (2008) RNA dynamics: it is about time. Curr Opin Struct Biol 18:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mustoe AM, Brooks CL, Al-Hashimi HM (2014) Hierarchy of RNA functional dynamics. Annu Rev Biochem 83:441–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mustoe AM, Busan S, Rice GM et al (2018) Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173:181–195.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levitt M (1969) Detailed molecular model for transfer ribonucleic acid. Nature 224:759–763

    Article  CAS  PubMed  Google Scholar 

  12. Rother M, Rother K, Puton T, Bujnicki JM (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39:4007–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, Huang Y, Gong Z et al (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu X, Zhao C, Chen SJ (2019) VfoldLA: a web server for loop assembly-based prediction of putative 3D RNA structures. J Struct Biol 207:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jonikas MA, Radmer RJ, Laederach A et al (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krokhotin A, Houlihan K, Dokholyan NV (2015) iFoldRNA v2: folding RNA with constraints. Bioinformatics 31:2891–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boniecki MJ, Lach G, Dawson WK et al (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44:e63

    Article  PubMed  Google Scholar 

  20. Parisien M, Cruz JA, Westhof E, Major F (2009) New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA 15:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Methods Mol Biol 857:231–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hajdin CE, Ding F, Dokholyan NV, Weeks KM (2010) On the significance of an RNA tertiary structure prediction. RNA 16:1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zok T, Popenda M, Szachniuk M (2014) MCQ4Structures to compute similarity of molecule structures. CEJOR 22:457–473

    Article  Google Scholar 

  24. Wiedemann J, Zok T, Milostan M, Szachniuk M (2017) LCS-TA to identify similar fragments in RNA 3D structures. BMC Bioinformatics 18:456

    Article  PubMed  PubMed Central  Google Scholar 

  25. Magnus M, Antczak M, Zok T et al (2020) RNA-puzzles toolkit: a computational resource of RNA 3D structure benchmark datasets, structure manipulation, and evaluation tools. Nucleic Acids Res 48:576–588

    CAS  PubMed  Google Scholar 

  26. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelli F (2018) The NumPy library. Python Data Analytics:49–85

    Google Scholar 

  29. Parisien M, Major F (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    Article  CAS  PubMed  Google Scholar 

  30. Waleń T, Chojnowski G, Gierski P, Bujnicki JM (2014) ClaRNA: a classifier of contacts in RNA 3D structures based on a comparative analysis of various classification schemes. Nucleic Acids Res 42:e151

    Article  PubMed  PubMed Central  Google Scholar 

  31. Williams CJ, Headd JJ, Moriarty NW et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315

    Article  CAS  PubMed  Google Scholar 

  32. Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maciej Antczak, Tomasz Zok, Jakub Wiedemann, and Marta Szachniuk for collaboration in the RNA-Puzzles toolkit project. We also thank the authors of the libraries used in our programs. We thank Rhiju Das for the idea of “align all” and Wayne Dawson for sharing unpublished code for “clarna_play.” We would like to also acknowledge all users of our tools for valuable feedback.

Funding

M.M. was supported by the “Regenerative Mechanisms for Health-ReMedy” grant MAB/20172, carried out within the International Research Agendas Program of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund. Z.M. was supported by the Single Cell Gene Expression Atlas grant 108437/Z/15/Z from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magnus, M., Miao, Z. (2023). RNA 3D Structure Comparison Using RNA-Puzzles Toolkit. In: Kawaguchi, R.K., Iwakiri, J. (eds) RNA Structure Prediction. Methods in Molecular Biology, vol 2586. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2768-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2768-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2767-9

  • Online ISBN: 978-1-0716-2768-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics