Skip to main content
Log in

MCQ4Structures to compute similarity of molecule structures

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

Comparison of molecular structures in order to identify their similarity is an important step in solving various problems derived from computational biology, like structure alignment and modelling, motif search or clustering. Thus, there is a constant need for the development of good measures to determine distances between the structures and tools to display these distances in an easily interpretable form. In the paper we present MCQ4Structures, a new method and tool for structural similarity computation based on molecule tertiary structure representation in torsional angle space. We discuss its unique features as compared with the other measures, including RMSD and LGA, and we show its experimental use in comparison of a number of 3D structures as well as evaluation of models predicted within RNA-Puzzles contest. MCQ4Structures software is available as a free Java WebStart application at: http://www.cs.put.poznan.pl/tzok/mcq/. The source code licensed under BSD can be downloaded from the same website.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamiak RW, Blazewicz J, Formanowicz P, Gdaniec Z, Kasprzak M, Popenda M, Szachniuk M (2004) An algorithm for an automatic NOE pathways analysis of 2D NMR spectra of RNA duplexes. J Comput Biol 11(1):163–179

    Article  Google Scholar 

  • Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. a new description using the concept of pseudorotation. J Am Chem Soc 94(23):8205–8212

    Article  Google Scholar 

  • Blazewicz J, Szachniuk M, Wojtowicz A (2005) RNA tertiary structure determination: NOE pathways construction by tabu search. Bioinformatics 21(10):2356–2361

    Article  Google Scholar 

  • Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, Huang L, Lavender CA, Lisi V, Major F, Mikolajczak K, Patel DJ, Philips A, Puton T, Santalucia J, Sijenyi F, Hermann T, Rother K, Rother M, Serganov A, Skorupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich C, Wildauer M, Leontis NB, Westhof E (2012) RNA-puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610–625

    Article  Google Scholar 

  • Daniluk P, Lesyng B (2011) A novel method to compare protein structures using local descriptors. BMC Bioinformatics 12(1):344

    Article  Google Scholar 

  • Dibrov S, McLean J, Hermann T (2011) Regulatory motif from the thymidylate synthase mRNA. Acta Crystallogr 67:97–104

    Google Scholar 

  • Duarte C, Pyle A (1998) Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol 284(5):1465–1478

    Article  Google Scholar 

  • Ferré F, Ponty Y, Lorenz WA, Clote P (2007) DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res 35(2):W659–W668

    Article  Google Scholar 

  • Fisher NI (1996) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21):2695–2696

    Article  Google Scholar 

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  • Jmol (2012) An open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  • Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals. J Mol Biol 301(2):401–414

    Article  Google Scholar 

  • Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32(5):922–923

    Article  Google Scholar 

  • Kirillova S, Tosatto S, Carugo O (2010) FRASS: the web-server for RNA structural comparison. BMC Bioinformatics 11(1):327

    Article  Google Scholar 

  • Lima LMT, de Almeida Silva V, de Castro Palmieri L, Oliveira MCB, Foguel D, Polikarpov I (2010) Identification of a novel ligand binding motif in the transthyretin channel. Bioorg Med Chem 18(1):100–110

    Article  Google Scholar 

  • Moult J, Fidelis K, Kryshtafovych A, Tramontano A (2011) Critical assessment of methods of protein structure prediction (CASP)-round IX. Proteins Struct Funct Bioinformatics 79(S10):1–5

    Article  Google Scholar 

  • Ortiz A, Strauss C, Olmea O (2002) MAMMOTH (Matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11(11):2606–2621

    Article  Google Scholar 

  • Palmieri L, Freire J, Palhano F, Azevedo E, Foguel D, Lima L (2010) Crystal structure of human transthyretin variant A25T–#2

  • Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11(1):231

    Article  Google Scholar 

  • Popenda M, Szachniuk M, Antczak M, Purzycka K, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40(14):e112

    Article  Google Scholar 

  • Prlic A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin PV, Chapman M, Gao J, Koh CH, Foisy S, Holland R, Rimsa G, Heuer ML, Brandstätter-Müller H, Bourne PE, Willis S (2012) BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics 28(20):2693–2695

    Article  Google Scholar 

  • Rother K, Rother M, Boniecki M, Puton T, Bujnicki JM (2011) RNA and protein 3D structure modeling: similarities and differences. J Mol Model 17(9):2325–2336

    Article  Google Scholar 

  • Scheraga H (1969) Calculation of polypeptide conformation. Harvey Lect 63:99–138

    Google Scholar 

  • Schrödinger, LLC (2012) The PyMOL molecular graphics system, Version 1.5.0.1

  • Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6(8):1091–1105

    Article  Google Scholar 

  • Wang C-W, Chen K-T, Lu CL (2010) iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Nucleic Acids Res 38(2):W340–W347

    Article  Google Scholar 

  • Westhof E, Auffinger P (2000) RNA tertiary structure. Encycl Anal Chem 45:5222–5232

    Google Scholar 

  • Williams D, Fleming I (1996) Spectroscopic methods in organic chemistry. McGraw-Hill, New York

    Google Scholar 

  • Williams SB, Vakonakis I, Golden SS, LiWang AC (2002) Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci USA 99(24):15357–15362

    Article  Google Scholar 

  • Williams T, Kelley C, many others (2012) Gnuplot 4.6: an interactive plotting program. http://gnuplot.sourceforge.net/

  • Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374

    Article  Google Scholar 

  • Zok T, Popenda M, Szachniuk M (2008) Comparison of RNA structures—concepts and measures. TU Clausthal Technical Report Series IfI-08-03:42–44

  • Zok T, Szachniuk M, Antczak M (2011) Comparison of RNA structures in torsional angle space. Mach Learn Rep 01/2011:14–18

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the European Regional Development Fund within Innovative Economy Programme (POIG.02.03.00-00-018/08 POWIEW), and grants from the Ministry of Science and Higher Education, and National Science Centre, Poland (2012/05/B/ST6/03026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Szachniuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zok, T., Popenda, M. & Szachniuk, M. MCQ4Structures to compute similarity of molecule structures. Cent Eur J Oper Res 22, 457–473 (2014). https://doi.org/10.1007/s10100-013-0296-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-013-0296-5

Keywords

Navigation