Skip to main content

Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2547))

Abstract

The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klein J (1986) Seeds of time: fifty years ago Peter A. Gorer discovered the H-2 complex. Immunogenetics 24(6):331–338. https://doi.org/10.1007/BF00377947

    Article  CAS  PubMed  Google Scholar 

  2. Snell GD, Higgins GF (1951) Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics 36(3):306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dausset J (1958) [iso-leuko-antibodies]. Acta Haematol 20(1–4):156–166. https://doi.org/10.1159/000205478

  4. Payne R, Rolfs MR (1958) Fetomaternal leukocyte incompatibility. J Clin Invest 37(12):1756–1763. https://doi.org/10.1172/JCI103768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Rood JJ, Eernisse JG, Van Leeuwen A (1958) Leucocyte antibodies in sera from pregnant women. Nature 181(4625):1735–1736. https://doi.org/10.1038/1811735a0

    Article  PubMed  Google Scholar 

  6. The MHC Sequencing Consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401(6756):921–923. https://doi.org/10.1038/44853

    Article  Google Scholar 

  7. Horton R, Wilming L, Rand V et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899. https://doi.org/10.1038/nrg1489

    Article  CAS  PubMed  Google Scholar 

  8. Mungall AJ, Palmer SA, Sims SK et al (2003) The DNA sequence and analysis of human chromosome 6. Nature 425(6960):805–811. https://doi.org/10.1038/nature02055

    Article  CAS  PubMed  Google Scholar 

  9. Geraghty DE, Koller BH, Hansen JA et al (1992) The HLA class I gene family includes at least six genes and twelve pseudogenes and gene fragments. J Immunol 149(6):1934–1946

    Article  CAS  PubMed  Google Scholar 

  10. Yunis EJ, Larsen CE, Fernandez-Vina M et al (2003) Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens 62(1):1–20. https://doi.org/10.1034/j.1399-0039.2003.00098.x

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman JF, Auffray C, Korman AJ et al (1984) The class II molecules of the human and murine major histocompatibility complex. Cell 36(1):1–13. https://doi.org/10.1016/0092-8674(84)90068-0

    Article  CAS  PubMed  Google Scholar 

  12. Giles RC, Capra JD (1985) Biochemistry of MHC class II molecules. Tissue Antigens 25(2):57–68. https://doi.org/10.1111/j.1399-0039.1985.tb00415.x

    Article  CAS  PubMed  Google Scholar 

  13. Andersson G, Andersson L, Larhammar D et al (1994) Simplifying genetic locus assignment of HLA-DRB genes. Immunol Today 15(2):58–62. https://doi.org/10.1016/0167-5699(94)90134-1

    Article  CAS  PubMed  Google Scholar 

  14. Carey BS, Poulton KV, Poles A (2019) Factors affecting HLA expression: a review. Int J Immunogenet 46(5):307–320. https://doi.org/10.1111/iji.12443

    Article  CAS  PubMed  Google Scholar 

  15. Robinson J, Barker DJ, Georgiou X et al (2020) IPD-IMGT/HLA database. Nucleic Acids Res 48(D1):D948–D955. https://doi.org/10.1093/nar/gkz950

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Galarza FF, McCabe A, Santos E et al (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48(D1):D783–D788. https://doi.org/10.1093/nar/gkz1029

    Article  CAS  PubMed  Google Scholar 

  17. Nunes E, Heslop H, Fernandez-Vina M et al (2011) Definitions of histocompatibility typing terms. Blood 118(23):e180–e183. https://doi.org/10.1182/blood-2011-05-353490

    Article  CAS  PubMed  Google Scholar 

  18. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205. https://doi.org/10.1001/jama.279.15.1200

    Article  CAS  PubMed  Google Scholar 

  19. Kvasz M, Allen IE, Gordon MJ et al (2000) Adverse drug reactions in hospitalized patients: a critique of a meta-analysis. MedGenMed 2(2):E3

    CAS  PubMed  Google Scholar 

  20. Miguel A, Azevedo LF, Araujo M et al (2012) Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 21(11):1139–1154. https://doi.org/10.1002/pds.3309

    Article  PubMed  Google Scholar 

  21. Daly AK (2020) Pharmacogenomics of drug-induced liver injury. Adv Mol Pathol 3:107–115. https://doi.org/10.1016/j.yamp.2020.07.010

    Article  CAS  Google Scholar 

  22. Ostapowicz G, Fontana RJ, Schiodt FV et al (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137(12):947–954. https://doi.org/10.7326/0003-4819-137-12-200212170-00007

    Article  PubMed  Google Scholar 

  23. Gonzalez-Galarza FF, McCabe A, Melo dos Santos EJ et al (2018) Allele frequency net database. In: Boegel S (ed) HLA typing: methods and protocols, vol 1802. Springer Science, part of Springer Nature, pp 49–62. https://doi.org/10.1007/978-1-4939-8546-3_4

    Chapter  Google Scholar 

  24. U.S. Food and Drug Administration (2021) Table of pharmacogenomic biomarkers in drug labeling. https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling. Accessed 14 Aug 2021

  25. Martin MA, Hoffman JM, Freimuth RR et al (2014) Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther 95(5):499–500. https://doi.org/10.1038/clpt.2014.38

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phillips EJ, Sukasem C, Whirl-Carrillo M et al (2018) Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther 103(4):574–581. https://doi.org/10.1002/cpt.1004

    Article  CAS  PubMed  Google Scholar 

  27. Karnes JH, Rettie AE, Somogyi AA et al (2021) Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther 109(2):302–309. https://doi.org/10.1002/cpt.2008

    Article  PubMed  Google Scholar 

  28. Saito Y, Stamp LK, Caudle KE et al (2016) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther 99(1):36–37. https://doi.org/10.1002/cpt.161

    Article  CAS  PubMed  Google Scholar 

  29. Padovan E, Bauer T, Tongio MM et al (1997) Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27(6):1303–1307. https://doi.org/10.1002/eji.1830270602

    Article  CAS  PubMed  Google Scholar 

  30. Wei CY, Chung WH, Huang HW et al (2012) Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson Syndrome. J Allergy Clin Immunol 129(6):1562–1569 e1565. https://doi.org/10.1016/j.jaci.2011.12.990

    Article  CAS  PubMed  Google Scholar 

  31. Illing PT, Vivian JP, Purcell AW et al (2013) Human leukocyte antigen-associated drug hypersensitivity. Curr Opin Immunol 25(1):81–89. https://doi.org/10.1016/j.coi.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Norcross MA, Luo S, Lu L et al (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21–F29. https://doi.org/10.1097/QAD.0b013e328355fe8f

    Article  CAS  PubMed  Google Scholar 

  33. Ostrov DA, Grant BJ, Pompeu YA et al (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959–9964. https://doi.org/10.1073/pnas.1207934109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Watkins S, Pichler WJ (2013) Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVbeta20-1, altering pHLA recognition. PLoS One 8(10):e76211. https://doi.org/10.1371/journal.pone.0076211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Russo MW, Galanko JA, Shrestha R et al (2004) Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transpl 10(8):1018–1023. https://doi.org/10.1002/lt.20204

    Article  PubMed  Google Scholar 

  36. Wu DY, Ugozzoli L, Pal BK et al (1989) Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A 86(8):2757–2760. https://doi.org/10.1073/pnas.86.8.2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Newton CR, Graham A, Heptinstall LE et al (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17(7):2503–2516. https://doi.org/10.1093/nar/17.7.2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olerup O, Zetterquist H (1992) HLA-DR typing by pcr amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39(5):225–235. https://doi.org/10.1111/j.1399-0039.1992.tb01940.x

    Article  CAS  PubMed  Google Scholar 

  39. Mickelson E, Smith A, McKinney S et al (1993) A comparative study of HLA-DRB1 typing by standard serology and hybridization of non-radioactive sequence-specific oligonucleotide probes to pcr-amplified DNA. Tissue Antigens 41(2):86–93. https://doi.org/10.1111/j.1399-0039.1993.tb01984.x

    Article  CAS  PubMed  Google Scholar 

  40. Wordsworth BP, Allsopp CE, Young RP et al (1990) HLA-DR typing using DNA amplification by the polymerase chain reaction and sequential hybridization to sequence-specific oligonucleotide probes. Immunogenetics 32(6):413–418. https://doi.org/10.1007/BF00241635

    Article  CAS  PubMed  Google Scholar 

  41. Erlich H, Bugawan T, Begovich AB et al (1991) HLA-DR, DQ and DP typing using PCR amplification and immobilized probes. Eur J Immunogenet 18(1–2):33–55. https://doi.org/10.1111/j.1744-313x.1991.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  42. Bugawan TL, Apple R, Erlich HA (1994) A method for typing polymorphism at the HLA-A locus using PCR amplification and immobilized oligonucleotide probes. Tissue Antigens 44(3):137–147. https://doi.org/10.1111/j.1399-0039.1994.tb02371.x

    Article  CAS  PubMed  Google Scholar 

  43. Gandhi MJ, Ferriola D, Huang Y et al (2017) Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: metrics of relevance and considerations for its successful implementation. Arch Pathol Lab Med 141(6):806–812. https://doi.org/10.5858/arpa.2016-0537-RA

    Article  CAS  PubMed  Google Scholar 

  44. Walsh PS, Erlich HA, Higuchi R (1992) Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl 1(4):241–250. https://doi.org/10.1101/gr.1.4.241

    Article  CAS  PubMed  Google Scholar 

  45. Moyer AM, Dukek B, Duellman P et al (2020) Concordance between predicted HLA type using next generation sequencing data generated for non-HLA purposes and clinical HLA type. Hum Immunol 81(8):423–429. https://doi.org/10.1016/j.humimm.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan WL, Shiao MS, Hui RC et al (2017) HLA association with drug-induced adverse reactions. J Immunol Res 2017:3186328. https://doi.org/10.1155/2017/3186328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kostenko L, Kjer-Nielsen L, Nicholson I et al (2011) Rapid screening for the detection of HLA-B57 and HLA-B58 in prevention of drug hypersensitivity. Tissue Antigens 78(1):11–20. https://doi.org/10.1111/j.1399-0039.2011.01649.x

    Article  CAS  PubMed  Google Scholar 

  48. Martin AM, Krueger R, Almeida CA et al (2006) A sensitive and rapid alternative to HLA typing as a genetic screening test for abacavir hypersensitivity syndrome. Pharmacogenet Genomics 16(5):353–357. https://doi.org/10.1097/01.fpc.0000197468.16126.cd

    Article  CAS  PubMed  Google Scholar 

  49. Erlichster M, Goudey B, Skafidas E et al (2019) Cross-ethnicity tagging SNPs for HLA alleles associated with adverse drug reaction. Pharmacogenomics J 19(3):230–239. https://doi.org/10.1038/s41397-018-0039-z

    Article  CAS  PubMed  Google Scholar 

  50. He Y, Hoskins JM, Clark S et al (2015) Accuracy of SNPs to predict risk of HLA alleles associated with drug-induced hypersensitivity events across racial groups. Pharmacogenomics 16(8):817–824. https://doi.org/10.2217/pgs.15.41

    Article  CAS  PubMed  Google Scholar 

  51. Zhu GD, Brenton AA, Malhotra A et al (2015) Genotypes at rs2844682 and rs3909184 have no clinical value in identifying HLA-B*15:02 carriers. Eur J Clin Pharmacol 71(8):1021–1023. https://doi.org/10.1007/s00228-015-1879-y

    Article  PubMed  Google Scholar 

  52. Saksit N, Nakkam N, Konyoung P et al (2017) Comparison between the HLA-B(*)58 : 01 allele and single-nucleotide polymorphisms in chromosome 6 for prediction of allopurinol-induced severe cutaneous adverse reactions. J Immunol Res 2017:2738784. https://doi.org/10.1155/2017/2738784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer D, Nunes K (2017) HLA imputation, what is it good for? Hum Immunol 78(3):239–241. https://doi.org/10.1016/j.humimm.2017.02.007

    Article  PubMed  Google Scholar 

  54. Zheng X, Shen J, Cox C et al (2014) HIBAG--HLA genotype imputation with attribute bagging. Pharmacogenomics J 14(2):192–200. https://doi.org/10.1038/tpj.2013.18

    Article  CAS  PubMed  Google Scholar 

  55. Marsh SG, Albert ED, Bodmer WF et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75(4):291–455. https://doi.org/10.1111/j.1399-0039.2010.01466.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson J, Malik A, Parham P et al (2000) IMGT/HLA database--a sequence database for the human major histocompatibility complex. Tissue Antigens 55(3):280–287. https://doi.org/10.1034/j.1399-0039.2000.550314.x

    Article  CAS  PubMed  Google Scholar 

  57. Mallal S, Phillips E, Carosi G et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568–579. https://doi.org/10.1056/NEJMoa0706135

    Article  PubMed  Google Scholar 

  58. Hung SI, Chung WH, Liou LB et al (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134–4139. https://doi.org/10.1073/pnas.0409500102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaniwa N, Saito Y, Aihara M et al (2008) HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson Syndrome and toxic epidermal necrolysis. Pharmacogenomics 9(11):1617–1622. https://doi.org/10.2217/14622416.9.11.1617

    Article  CAS  PubMed  Google Scholar 

  60. Cristallo AF, Schroeder J, Citterio A et al (2011) A study of HLA class I and class II 4-digit allele level in Stevens-Johnson syndrome and toxic epidermal necrolysis. Int J Immunogenet 38(4):303–309. https://doi.org/10.1111/j.1744-313X.2011.01011.x

    Article  CAS  PubMed  Google Scholar 

  61. Kang HR, Jee YK, Kim YS et al (2011) Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics 21(5):303–307. https://doi.org/10.1097/FPC.0b013e32834282b8

    Article  CAS  PubMed  Google Scholar 

  62. Romano A, De Santis A, Romito A et al (1998) Delayed hypersensitivity to aminopenicillins is related to major histocompatibility complex genes. Ann Allergy Asthma Immunol 80(5):433–437. https://doi.org/10.1016/s1081-1206(10)62997-3

    Article  CAS  PubMed  Google Scholar 

  63. O'Donohue J, Oien KA, Donaldson P et al (2000) Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47(5):717–720. https://doi.org/10.1136/gut.47.5.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donaldson PT, Daly AK, Henderson J et al (2010) Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol 53(6):1049–1053. https://doi.org/10.1016/j.jhep.2010.05.033

    Article  CAS  PubMed  Google Scholar 

  65. Lucena MI, Molokhia M, Shen Y et al (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141(1):338–347. https://doi.org/10.1053/j.gastro.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  66. Stephens C, Lopez-Nevot MA, Ruiz-Cabello F et al (2013) HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One 8(7):e68111. https://doi.org/10.1371/journal.pone.0068111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hautekeete ML, Horsmans Y, Van Waeyenberge C et al (1999) HLA association of amoxicillin-clavulanate--induced hepatitis. Gastroenterology 117(5):1181–1186. https://doi.org/10.1016/s0016-5085(99)70404-x

    Article  CAS  PubMed  Google Scholar 

  68. Chen WT, Chi CC (2019) Associations of HLA genotypes with antithyroid drug-induced agranulocytosis: a systematic review and meta-analysis of pharmacogenomics studies. Br J Clin Pharmacol 85(9):1878–1887. https://doi.org/10.1111/bcp.13989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim SH, Choi JH, Lee KW et al (2005) The human leucocyte antigen-DRB1*1302-DQB1*0609-DPB1*0201 haplotype may be a strong genetic marker for aspirin-induced urticaria. Clin Exp Allergy 35(3):339–344. https://doi.org/10.1111/j.1365-2222.2004.02197.x

    Article  CAS  PubMed  Google Scholar 

  70. Man CB, Kwan P, Baum L et al (2007) Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48(5):1015–1018. https://doi.org/10.1111/j.1528-1167.2007.01022.x

    Article  CAS  PubMed  Google Scholar 

  71. Mockenhaupt M, Wang CW, Hung SI et al (2019) HLA-B*57:01 confers genetic susceptibility to carbamazepine-induced SJS/TEN in Europeans. Allergy 74(11):2227–2230. https://doi.org/10.1111/all.13821

    Article  PubMed  Google Scholar 

  72. Li LJ, Hu FY, Wu XT et al (2013) Predictive markers for carbamazepine and lamotrigine-induced maculopapular exanthema in Han Chinese. Epilepsy Res 106(1–2):296–300. https://doi.org/10.1016/j.eplepsyres.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  73. Hung SI, Chung WH, Jee SH et al (2006) Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 16(4):297–306. https://doi.org/10.1097/01.fpc.0000199500.46842.4a

    Article  CAS  PubMed  Google Scholar 

  74. Kashiwagi M, Aihara M, Takahashi Y et al (2008) Human leukocyte antigen genotypes in carbamazepine-induced severe cutaneous adverse drug response in Japanese patients. J Dermatol 35(10):683–685. https://doi.org/10.1111/j.1346-8138.2008.00548.x

    Article  PubMed  Google Scholar 

  75. Hsiao YH, Hui RC, Wu T et al (2014) Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci 73(2):101–109. https://doi.org/10.1016/j.jdermsci.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  76. Legge SE, Walters JT (2019) Genetics of clozapine-associated neutropenia: recent advances, challenges and future perspective. Pharmacogenomics 20(4):279–290. https://doi.org/10.2217/pgs-2018-0188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang FR, Liu H, Irwanto A et al (2013) HLA-B*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med 369(17):1620–1628. https://doi.org/10.1056/NEJMoa1213096

    Article  CAS  PubMed  Google Scholar 

  78. Pellicano R, Lomuto M, Ciavarella G et al (1997) Fixed drug eruptions with feprazone are linked to HLA-B22. J Am Acad Dermatol 36(5 Pt 1):782–784. https://doi.org/10.1016/s0190-9622(97)80347-7

    Article  CAS  PubMed  Google Scholar 

  79. Nicoletti P, Aithal GP, Bjornsson ES et al (2017) Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology 152(5):1078–1089. https://doi.org/10.1053/j.gastro.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  80. Daly AK, Donaldson PT, Bhatnagar P et al (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41(7):816–819. https://doi.org/10.1038/ng.379

    Article  CAS  PubMed  Google Scholar 

  81. Nicoletti P, Aithal GP, Chamberlain TC et al (2019) Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther 106(1):245–253. https://doi.org/10.1002/cpt.1375

    Article  CAS  PubMed  Google Scholar 

  82. Nicoletti P, Werk AN, Sawle A et al (2016) HLA-DRB1*16: 01-DQB1*05: 02 is a novel genetic risk factor for flupirtine-induced liver injury. Pharmacogenet Genomics 26(5):218–224. https://doi.org/10.1097/FPC.0000000000000209

    Article  CAS  PubMed  Google Scholar 

  83. Batchelor JR, Welsh KI, Tinoco RM et al (1980) Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. Lancet 1(8178):1107–1109. https://doi.org/10.1016/s0140-6736(80)91554-8

    Article  CAS  PubMed  Google Scholar 

  84. Bruno CD, Fremd B, Church RJ et al (2020) HLA associations with infliximab-induced liver injury. Pharmacogenomics J 20(5):681–686. https://doi.org/10.1038/s41397-020-0159-0

    Article  CAS  PubMed  Google Scholar 

  85. Kazeem GR, Cox C, Aponte J et al (2009) High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenet Genomics 19(9):661–665. https://doi.org/10.1097/FPC.0b013e32832c347d

    Article  CAS  PubMed  Google Scholar 

  86. Hung SI, Chung WH, Liu ZS et al (2010) Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11(3):349–356. https://doi.org/10.2217/pgs.09.162

    Article  CAS  PubMed  Google Scholar 

  87. Shi YW, Min FL, Liu XR et al (2011) HLA-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the Han Chinese population. Basic Clin Pharmacol Toxicol 109(1):42–46. https://doi.org/10.1111/j.1742-7843.2011.00681.x

    Article  CAS  PubMed  Google Scholar 

  88. Spraggs CF, Parham LR, Hunt CM et al (2012) Lapatinib-induced liver injury characterized by class II HLA and Gilbert's syndrome genotypes. Clin Pharmacol Ther 91(4):647–652. https://doi.org/10.1038/clpt.2011.277

    Article  CAS  PubMed  Google Scholar 

  89. Spraggs CF, Budde LR, Briley LP et al (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29(6):667–673. https://doi.org/10.1200/JCO.2010.31.3197

    Article  CAS  PubMed  Google Scholar 

  90. Schaid DJ, Spraggs CF, McDonnell SK et al (2014) Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 32(22):2296–2303. https://doi.org/10.1200/JCO.2013.52.9867

    Article  CAS  PubMed  Google Scholar 

  91. Schmidt KL, Mueller-Eckhardt C (1977) Agranulocytosis, levamisole, and HLA-B27. Lancet 2(8028):85. https://doi.org/10.1016/s0140-6736(77)90082-4

    Article  CAS  PubMed  Google Scholar 

  92. Singer JB, Lewitzky S, Leroy E et al (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42(8):711–714. https://doi.org/10.1038/ng.632

    Article  CAS  PubMed  Google Scholar 

  93. Li X, Jin S, Fan Y et al (2019) Association of HLA-C*03:02 with methimazole-induced liver injury in Graves’ disease patients. Biomed Pharmacother 117:109095. https://doi.org/10.1016/j.biopha.2019.109095

    Article  CAS  PubMed  Google Scholar 

  94. Kim SH, Kim M, Lee KW et al (2010) HLA-B*5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics 11(6):879–884. https://doi.org/10.2217/pgs.10.54

    Article  CAS  PubMed  Google Scholar 

  95. Urban TJ, Nicoletti P, Chalasani N et al (2017) Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. J Hepatol 67(1):137–144. https://doi.org/10.1016/j.jhep.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Littera R, Carcassi C, Masala A et al (2006) HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 20(12):1621–1626. https://doi.org/10.1097/01.aids.0000238408.82947.09

    Article  CAS  PubMed  Google Scholar 

  97. Martin AM, Nolan D, James I et al (2005) Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 19(1):97–99. https://doi.org/10.1097/00002030-200501030-00014

    Article  CAS  PubMed  Google Scholar 

  98. Yuan J, Guo S, Hall D et al (2011) Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 25(10):1271–1280. https://doi.org/10.1097/QAD.0b013e32834779df

    Article  CAS  PubMed  Google Scholar 

  99. Phillips E, Bartlett JA, Sanne I et al (2013) Associations between HLA-DRB1*0102, HLA-B*5801, and hepatotoxicity during initiation of nevirapine-containing regimens in South Africa. J Acquir Immune Defic Syndr 62(2):e55–e57. https://doi.org/10.1097/QAI.0b013e31827ca50f

    Article  PubMed  PubMed Central  Google Scholar 

  100. He N, Min FL, Shi YW et al (2012) Cutaneous reactions induced by oxcarbazepine in Southern Han Chinese: incidence, features, risk factors and relation to HLA-B alleles. Seizure 21(8):614–618. https://doi.org/10.1016/j.seizure.2012.06.014

    Article  PubMed  Google Scholar 

  101. Lv YD, Min FL, Liao WP et al (2013) The association between oxcarbazepine-induced maculopapular eruption and HLA-B alleles in a Northern Han Chinese population. BMC Neurol 13:75. https://doi.org/10.1186/1471-2377-13-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roujeau JC, Huynh TN, Bracq C et al (1987) Genetic susceptibility to toxic epidermal necrolysis. Arch Dermatol 123(9):1171–1173

    Article  CAS  PubMed  Google Scholar 

  103. Xu CF, Johnson T, Wang X et al (2016) HLA-B*57:01 confers susceptibility to pazopanib-associated liver injury in patients with cancer. Clin Cancer Res 22(6):1371–1377. https://doi.org/10.1158/1078-0432.CCR-15-2044

    Article  CAS  PubMed  Google Scholar 

  104. Yang F, Gu B, Zhang L et al (2014) HLA-B*13:01 is associated with salazosulfapyridine-induced drug rash with eosinophilia and systemic symptoms in Chinese Han population. Pharmacogenomics 15(11):1461–1469. https://doi.org/10.2217/pgs.14.69

    Article  CAS  PubMed  Google Scholar 

  105. Roujeau JC, Bracq C, Huyn NT et al (1986) HLA phenotypes and bullous cutaneous reactions to drugs. Tissue Antigens 28(4):251–254. https://doi.org/10.1111/j.1399-0039.1986.tb00491.x

    Article  CAS  PubMed  Google Scholar 

  106. Kongpan T, Mahasirimongkol S, Konyoung P et al (2015) Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharmacogenet Genomics 25(8):402–411. https://doi.org/10.1097/FPC.0000000000000153

    Article  CAS  PubMed  Google Scholar 

  107. Lonjou C, Borot N, Sekula P et al (2008) A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 18(2):99–107. https://doi.org/10.1097/FPC.0b013e3282f3ef9c

    Article  CAS  PubMed  Google Scholar 

  108. Hirata K, Takagi H, Yamamoto M et al (2008) Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 8(1):29–33. https://doi.org/10.1038/sj.tpj.6500442

    Article  CAS  PubMed  Google Scholar 

  109. Kindmark A, Jawaid A, Harbron CG et al (2008) Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8(3):186–195. https://doi.org/10.1038/sj.tpj.6500458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Moyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Moyer, A.M., Gandhi, M.J. (2022). Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_2

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics