Skip to main content

High-Throughput Profiling of Metabolic Phenotypes Using High-Resolution GC-MS

  • Protocol
  • First Online:
High-Throughput Plant Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2539))

Abstract

Metabolite profiling provides insights into the metabolic signatures, which themselves are considered as phonotypes closely related to the agronomic and phenotypic traits such as yield, nutritional values, stress resistance, and nutrient use efficiency. GC-MS is a sensitive and high-throughput analytical platform and has been proved to be a vital tool for the analysis of primary metabolism to provide an overview of cellular and organismal metabolic status. The potential of GC-MS metabolite profiling as a tool for detecting metabolic changes in plants grown in a high-throughput plant phenotyping platform was explored. In this chapter, we describe an integrated workflow of semi-targeted GC-high-resolution (HR)-time-of-flight (TOF)-MS metabolomics with both the analytical and computational steps, focusing mainly on the sample preparation, GC-HR-TOF-MS analysis part, and data analysis for plant phenotyping efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  Google Scholar 

  2. Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  CAS  Google Scholar 

  3. Harrigan GG, Martino-Catt S, Glenn KC (2007) Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics 3(3):259–272

    Article  CAS  Google Scholar 

  4. Neilson EH, Edwanrds AM, Blomsledt CK et al (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66(7):1817–1832

    Article  CAS  Google Scholar 

  5. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  Google Scholar 

  6. Steinfath M, Strehmel N, Peters R et al (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotech J 8(8):900–911

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhang Y (2007) Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Crit Rev Food Sci Nutr 47(5):521–542

    Article  CAS  Google Scholar 

  8. Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  Google Scholar 

  9. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625

    Article  CAS  Google Scholar 

  10. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Molec Life Sci 69(19):3225–3243

    Article  CAS  Google Scholar 

  11. Hoker J, Obersteine F, Bönisch H et al (2015) Comparison of GC/time-of-flight MS with GC/quadrupole MS for halocarbon trace gas analysis. Atmosp MeasurTechnol 8(5):2195–2206

    CAS  Google Scholar 

  12. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083

    Article  CAS  Google Scholar 

  13. Lisec J, Schauer N, Kopka J et al (2006) Gas chromatography-mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  Google Scholar 

  14. Dekoning W, Vandam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204(1):118–123

    Article  CAS  Google Scholar 

  15. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13(14):1347–1355

    Article  CAS  Google Scholar 

  16. Hancock R (1958) The intracellular amino acids of Staphylococcus aureus - release and analysis. Biochim Biophys Acta 28(2):402–412

    Article  CAS  Google Scholar 

  17. Gale EF (1947) The assimilation of amino-acids by bacteria: 1. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. Microbiology 1(1):53–76

    CAS  Google Scholar 

  18. Fuerst R, Wagner RP (1957) An analysis of the free intracellular amino acids of certain strains of Neurospora. Arch Biochem Biophys 70(2):311–326

    Article  CAS  Google Scholar 

  19. Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313(1):145–154

    Article  Google Scholar 

  20. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79(16):6167–6173

    Article  CAS  Google Scholar 

  21. Chen SL, Hoene M, Li J et al (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromat A 1298:9–16

    Article  CAS  Google Scholar 

  22. Kind T, Wohlgenuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048

    Article  CAS  Google Scholar 

  23. Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC-MS metabolomics. J Chromat B Anal Technol Biom Life Sci 871(2):191–201

    Article  CAS  Google Scholar 

  24. Jonsson P, Gullberg J, Nordström A et al (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76(6):1738–1745

    Article  CAS  Google Scholar 

  25. Xu FG, Zou L, Ong CN (2010) Experiment-originated variations, and multi-peak and multi-origination phenomena in derivatization-based GC-MS metabolomics. TrAC Trends Anal Chem 29(3):269–280

    Article  CAS  Google Scholar 

  26. Moros G, Chatziioannou AG, Gika HG et al (2017) Investigation of the derivatization conditions for GC-MS metabolomics of biological samples. Bioanalysis 9(1):53–65

    Article  CAS  Google Scholar 

  27. Fang ML, Ivanisevic J, Benton HP et al (2015) Thermal degradation of small molecules: a global metabolomic investigation. Anal Chem 87(21):10935–10941

    Article  CAS  Google Scholar 

  28. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput:455–466

    Google Scholar 

  29. Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868

    Article  CAS  Google Scholar 

  30. Worley B, Halouska S, Powers R (2013) Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal Biochem 433(2):102–104

    Article  CAS  Google Scholar 

  31. Ch HW, Broeckling CD, Helmus R et al (2008) Discovery of metabolite features for the modelling and analysis of high-resolution NMR spectra. Internet J Data Min Bioinfor 2(2):176–192

    Article  Google Scholar 

  32. Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis - a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23

    Article  CAS  Google Scholar 

  33. Henry VJ, Bandrowski AE, Pepi AS et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation/EPSCoR RII Track-2 FEC (Award #1736192, to N.A. and T.O.), the National Science Foundation/EPSCoR RII Track-1 (Award #1557417, to N.W. and T.O.), and the University of Nebraska-Lincoln Faculty Startup Grant (to T.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Obata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wase, N., Abshire, N., Obata, T. (2022). High-Throughput Profiling of Metabolic Phenotypes Using High-Resolution GC-MS. In: Lorence, A., Medina Jimenez, K. (eds) High-Throughput Plant Phenotyping. Methods in Molecular Biology, vol 2539. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2537-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2537-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2536-1

  • Online ISBN: 978-1-0716-2537-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics