Skip to main content

Genome-Wide Native R-Loop Profiling by R-Loop Cleavage Under Targets and Tagmentation (R-Loop CUT&Tag)

  • Protocol
  • First Online:
R-Loops

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2528))

Abstract

R-loops are three-stranded nucleic acid structures that consist of a DNA–RNA hybrid and a displaced single-stranded DNA. R-loops occur during transcription and participate in multiple physiological processes such as DNA repair, modulating DNA topology, and regulation of gene transcription. Dysfunctional R-loops associate with several human diseases such as neurological disorders and cancer. Therefore, accurately and comprehensively profiling native R-loops is crucial to understand their functions under both physiological and pathological conditions. Here, we describe a convenient native R-loop profiling method, R-loop CUT&Tag, which combines a DNA–RNA hybrid sensor (GST-His6–2 × HBD or S9.6 antibody) with a pA-Tn5-based cleavage under targets and tagmentation approach. R-loop CUT&Tag starts with 0.5 million cells and can sensitively detect native and specific R-loops at the promoter, gene body, and enhancer regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia-Muse T, Aguilera A (2019) R loops: from physiological to pathological roles. Cell 179(3):604–618

    Article  CAS  Google Scholar 

  2. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124

    Article  CAS  Google Scholar 

  3. Marnef A, Legube G (2021) R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 23(4):305–313

    Article  CAS  Google Scholar 

  4. Wang K, Wang H, Li C et al (2021) Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv 7(8):eabe3516

    Article  CAS  Google Scholar 

  5. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396

    Article  CAS  Google Scholar 

  6. Crossley MP, Bocek M, Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73(3):398–411

    Article  CAS  Google Scholar 

  7. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597

    Article  CAS  Google Scholar 

  8. Sanz LA, Hartono SR, Lim YW et al (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific Epigenomic signatures in mammals. Mol Cell 63(1):167–178

    Article  CAS  Google Scholar 

  9. Yan Q, Shields EJ, Bonasio R et al (2019) Mapping native R-loops genome-wide using a targeted nuclease approach. Cell Rep 29(5):1369–80 e5

    Article  CAS  Google Scholar 

  10. Chen L, Chen JY, Zhang X et al (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68(4):745–57 e5

    Article  CAS  Google Scholar 

  11. Kaya-Okur HS, Wu SJ, Codomo CA et al (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10(1):1930

    Article  Google Scholar 

  12. Wang Q, Xiong H, Ai S et al (2019) CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell 76(1):206–16 e7

    Article  CAS  Google Scholar 

  13. Lu B, Dong L, Yi D et al (2020) Transposase-assisted tagmentation of RNA/DNA hybrid duplexes. elife 9:e54919

    Article  CAS  Google Scholar 

  14. Carter B, Ku WL, Kang JY et al (2019) Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun 10(1):3747

    Article  Google Scholar 

  15. Di L, Fu Y, Sun Y et al (2020) RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc Natl Acad Sci U S A 117(6):2886–2893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Research and Development Program of China Stem Cell and Translational Research (NO. 2019YFA0111100), NSFC Excellent Young Scientists Fund (82122006), and the China National Natural Science Foundation (82172641) awarded to K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiwei Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, H., Li, C., Liang, K. (2022). Genome-Wide Native R-Loop Profiling by R-Loop Cleavage Under Targets and Tagmentation (R-Loop CUT&Tag). In: Aguilera, A., Ruzov, A. (eds) R-Loops . Methods in Molecular Biology, vol 2528. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2477-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2477-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2476-0

  • Online ISBN: 978-1-0716-2477-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics