Skip to main content

Targeting Noncoding RNA Domains to Genomic Loci with CRISPR-Display: Guidelines for Designing, Building, and Testing sgRNA–ncRNA Expression Constructs

  • Protocol
  • First Online:
CRISPR Guide RNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2162))

Abstract

CRISPR-Display uses the S. pyogenes Cas9 protein to posttranscriptionally localize noncoding RNA (ncRNA) domains to any genomic site, by directly fusing these domains to the Cas9 sgRNA cofactor. This versatile technology enables numerous applications for interrogating natural chromatin-regulatory ncRNAs, or for utilizing artificial ncRNA and ribonucleoprotein (RNP) devices at individual chromatin loci. To achieve these, a successful CRISPR-Display experiment requires that chimeric sgRNA–ncRNA fusions are stably expressed and incorporated into Cas9 complexes, and that they retain their ncRNA “cargo” domains at the targeted genomic sites. Here, I describe a workflow for designing, building, and testing such chimeric sgRNA–ncRNA expression constructs. I detail strategies for choosing expression systems and sgRNA insertion topologies, for assaying the incorporation of sgRNA–ncRNA fusions into functional Cas9 complexes, and for surveying the activities of ncRNA domains at targeted genomic loci. This establishes an initial set of “best practices” for the design and implementation of CRISPR-Display experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  2. Liang JC, Bloom RJ, Smolke CD (2011) Engineering biological systems with synthetic RNA molecules. Mol Cell 43(6):915–926. https://doi.org/10.1016/j.molcel.2011.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  4. Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17(12):756–770. https://doi.org/10.1038/nrm.2016.126

    Article  CAS  PubMed  Google Scholar 

  5. Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, Higgs DR, Miska EA, Ponting CP (2014) Considerations when investigating lncRNA function in vivo. elife 3:e03058. https://doi.org/10.7554/eLife.03058

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A (2016) Using RNA as molecular code for programming cellular function. ACS Synth Biol 5(8):795–809. https://doi.org/10.1021/acssynbio.5b00297

    Article  CAS  PubMed  Google Scholar 

  7. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-display. Nat Methods 12(7):664–670. https://doi.org/10.1038/nmeth.3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, Jangi M, Giallourakis CC, Sharp PA, Young RA (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350(6263):978–981. https://doi.org/10.1126/science.aad3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, Wu B, Xu R, Liu W, Yan P, Shao W, Lu Z, Li H, Na J, Tang F, Wang J, Zhang YE, Shen X (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18(5):637–652. https://doi.org/10.1016/j.stem.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  10. Maass PG, Barutcu AR, Shechner DM, Weiner CL, Mele M, Rinn JL (2018) Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat Struct Mol Biol 25(2):176–184. https://doi.org/10.1038/s41594-017-0015-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1-2):339–350. https://doi.org/10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Zhan Y, Chen Z, He A, Li J, Wu H, Liu L, Zhuang C, Lin J, Guo X, Zhang Q, Huang W, Cai Z (2016) Directing cellular information flow via CRISPR signal conductors. Nat Methods 13(11):938–944. https://doi.org/10.1038/nmeth.3994

    Article  CAS  PubMed  Google Scholar 

  13. Ferry QR, Lyutova R, Fulga TA (2017) Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun 8:14633. https://doi.org/10.1038/ncomms14633

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15(11):928–931. https://doi.org/10.1038/s41592-018-0174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mele M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL (2017) Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27(1):27–37. https://doi.org/10.1101/gr.214205.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, Bozzoni I, Tartaglia GG, Brun C (2018) Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res 46(2):917–928. https://doi.org/10.1093/nar/gkx1169

    Article  CAS  PubMed  Google Scholar 

  17. Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB (2018) Sequence, structure, and context preferences of human RNA binding proteins. Mol Cell 70(5):854–867.e9. https://doi.org/10.1016/j.molcel.2018.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubota M, Tran C, Spitale RC (2015) Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 11(12):933–941. https://doi.org/10.1038/nchembio.1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shukla CJ, McCorkindale AL, Gerhardinger C, Korthauer KD, Cabili MN, Shechner DM, Irizarry RA, Maass PG, Rinn JL (2018) High-throughput identification of RNA nuclear enrichment sequences. EMBO J 37(6). https://doi.org/10.15252/embj.201798452

  20. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  21. Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21(7):633–640. https://doi.org/10.1038/nsmb.2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26(21):2392–2407. https://doi.org/10.1101/gad.204438.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cuello P, Boyd DC, Dye MJ, Proudfoot NJ, Murphy S (1999) Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J 18(10):2867–2877. https://doi.org/10.1093/emboj/18.10.2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hendrickson D, Kelley DR, Tenen D, Bernstein B, Rinn JL (2016) Widespread RNA binding by chromatin-associated proteins. Genome Biol 17:28. https://doi.org/10.1186/s13059-016-0878-3

    Article  CAS  Google Scholar 

  25. Simon MD (2016) Insight into lncRNA biology using hybridization capture analyses. Biochim Biophys Acta 1859(1):121–127. https://doi.org/10.1016/j.bbagrm.2015.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Yasemin Sancak for her tireless assistance in the preparation of the manuscript, David Hendrickson and Danielle Tenen for sharing their technical expertise in fRIP, John Rinn, Ezgi Hacisuleyman, and Scott Younger for their assistance in developing CRISPR-Display, and Philipp Maass for his assistance with CLING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Shechner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shechner, D.M. (2021). Targeting Noncoding RNA Domains to Genomic Loci with CRISPR-Display: Guidelines for Designing, Building, and Testing sgRNA–ncRNA Expression Constructs. In: Fulga, T.A., Knapp, D.J.H.F., Ferry, Q.R.V. (eds) CRISPR Guide RNA Design. Methods in Molecular Biology, vol 2162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0687-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0687-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0686-5

  • Online ISBN: 978-1-0716-0687-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics