Skip to main content

Direct R-Loop Visualization on Genomic DNA by Native Automated Electron Microscopy

  • Protocol
  • First Online:
R-Loops

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2528))

Abstract

R-loop are physiologically present on genomic DNA of different organisms and play important roles in genome regulation. However, an increase in their abundance and/or size has been suggested to interfere with the DNA replication process, contributing to genome instability. Most available approaches to monitor R-loops are based on antibodies/enzymes that cannot effectively distinguish R-loops from DNA–RNA hybrids and assess R-loop size and frequency in a population of molecules. Electron microscopy has successfully allowed single-molecule visualization of DNA replication and repair intermediates, uncovering key architectural modifications in DNA, induced by genotoxic stress or by the associated cellular response. Here, we describe recent modifications of this visualization workflow to implement partial automation of image acquisition and analysis. Coupling this refined workflow with sample preparation procedures that protect R-loop stability allows for direct visualization of R-loop structures on genomic DNA, independently from probes. Combining single-molecule information and DNA content assessment, this approach provides direct estimations of R-loop frequency, size, and burden on genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  CAS  Google Scholar 

  2. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    Article  CAS  Google Scholar 

  3. Quinet A, Tirman S, Jackson J, Šviković S, Lemaçon D, Carvajal-Maldonado D et al (2020) PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells. Mol Cell 77:461–474

    Article  CAS  Google Scholar 

  4. Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 21:663–651

    Article  Google Scholar 

  5. Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M, Técher H et al (2017) Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol Cell 67:867–881

    Article  CAS  Google Scholar 

  6. Mukherjee C, Tripathi V, Manolika EM, Heijink AM, Ricci G, Merzouk S et al (2019) RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nat Commun 10:3287

    Article  Google Scholar 

  7. Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R et al (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423

    Article  CAS  Google Scholar 

  8. Follonier C, Oehler J, Herrador R, Lopes M (2013) Friedreich’s ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 20:486–494

    Article  CAS  Google Scholar 

  9. Giannattasio M, Zwicky K, Follonier C, Foiani M, Lopes M, Branzei D (2014) Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21:884–892

    Article  CAS  Google Scholar 

  10. Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R et al (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208:563–579

    Article  CAS  Google Scholar 

  11. Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K, Mutreja K et al (2017) Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun 8:859

    Article  Google Scholar 

  12. Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S et al (2017) MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun 8:860

    Article  Google Scholar 

  13. Mutreja K, Krietsch J, Hess J, Ursich S, Berti M, Roessler FK et al (2018) ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep 24:2629–2642

    Article  CAS  Google Scholar 

  14. Zellweger R, Lopes M (2018) Dynamic architecture of eukaryotic DNA replication forks in vivo, visualized by electron microscopy. Methods Mol Biol 1672:261–294

    Article  CAS  Google Scholar 

  15. Lopes M (2009) Electron microscopy methods for studying in vivo DNA replication intermediates. In: DNA replication. Springer, pp 605–631

    Chapter  Google Scholar 

  16. Neelsen KJ, Chaudhuri AR, Follonier C, Herrador R, Lopes M (2014) Visualization and interpretation of eukaryotic DNA replication intermediates in vivo by electron microscopy. In: Functional analysis of DNA and chromatin. Springer, pp 177–208

    Chapter  Google Scholar 

  17. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  CAS  Google Scholar 

  18. Stoy H, Zwicky K, Lang K, Krietsch J, Kuster D, Schmid J et al Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. under Revis. after peer Rev

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stoy, H., Luethi, J., Roessler, F.K., Riemann, J., Kaech, A., Lopes, M. (2022). Direct R-Loop Visualization on Genomic DNA by Native Automated Electron Microscopy. In: Aguilera, A., Ruzov, A. (eds) R-Loops . Methods in Molecular Biology, vol 2528. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2477-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2477-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2476-0

  • Online ISBN: 978-1-0716-2477-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics