Skip to main content

Visualization and Interpretation of Eukaryotic DNA Replication Intermediates In Vivo by Electron Microscopy

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

The detailed understanding of the DNA replication process requires structural insight. The combination of psoralen cross-linking and electron microscopy has been extensively exploited to reveal the fine architecture of in vivo DNA replication intermediates. This approach proved instrumental to uncover the basic mechanisms of DNA duplication, as well as the perturbation of this process by various forms of replication stress. The replication structures are stabilized in vivo (by psoralen cross-linking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of genomic DNA, extracted from budding yeast, Xenopus egg extracts, or cultured mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inciarte MR, Salas M, Sogo JM (1980) Structure of replicating DNA molecules of Bacillus subtilis bacteriophage phi 29. J Virol 34:187–199

    PubMed  CAS  Google Scholar 

  2. Lucchini R, Sogo JM (1995) Replication of transcriptionally active chromatin. Nature 374:276–280

    Article  PubMed  CAS  Google Scholar 

  3. Sogo JM et al (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189:189–204

    Article  PubMed  CAS  Google Scholar 

  4. Avemann K et al (1988) Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol Cell Biol 8:3026–3034

    PubMed  CAS  Google Scholar 

  5. Berti M, Ray Chaudhuri A, Thangavel S et al (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354

    Article  PubMed  CAS  Google Scholar 

  6. Engels K et al (2011) 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks. PLoS Genet 7:e1001367

    Article  PubMed  CAS  Google Scholar 

  7. Follonier C, Oehler J, Herrador R et al (2013) Friedreich’s Ataxia associated GAA repeats induce replication fork reversal and unusual molecular junctions in human cells. Nat Struct Mol Biol 20:486–494

    Article  PubMed  CAS  Google Scholar 

  8. Giannattasio M et al (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 40:50–62

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto Y et al (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17:1305–1311

    Article  PubMed  CAS  Google Scholar 

  10. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    Article  PubMed  CAS  Google Scholar 

  11. Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21:3342–3355

    Article  PubMed  CAS  Google Scholar 

  12. Neelsen KJ, Zanini IMY, Herrador R et al (2013) Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J Cell Biol 6:699–708

    Article  Google Scholar 

  13. Ray Chaudhuri A et al (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423

    Article  PubMed  CAS  Google Scholar 

  14. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  PubMed  CAS  Google Scholar 

  15. Lopes M (2009) Electron microscopy methods for studying in vivo DNA replication intermediates. Methods Mol Biol 521:605–631

    Article  PubMed  CAS  Google Scholar 

  16. Gasser R, Koller T, Sogo JM (1996) The stability of nucleosomes at the replication fork. J Mol Biol 258:224–239

    Article  PubMed  CAS  Google Scholar 

  17. Gruss C et al (1993) Disruption of the nucleosomes at the replication fork. EMBO J 12:4533–4545

    PubMed  CAS  Google Scholar 

  18. Wellinger RE et al (1999) In vivo mapping of nucleosomes using psoralen-DNA crosslinking and primer extension. Methods Mol Biol 119:161–173

    PubMed  CAS  Google Scholar 

  19. Gruber M, Wellinger RE, Sogo JM (2000) Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes. Mol Cell Biol 20:5777–5787

    Article  PubMed  CAS  Google Scholar 

  20. Vollenweider HJ, Sogo JM, Koller T (1975) A routine method for protein-free spreading of double- and single-stranded nucleic acid molecules. Proc Nat Acad Sci USA 72:83–87

    Article  PubMed  CAS  Google Scholar 

  21. Sogo JM, Thoma F (1989) Electron microscopy of chromatin. Methods Enzymol 170:142–165

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. CSHL Press, New York, USA

    Google Scholar 

  23. Trenz K, Errico A, Costanzo V (2008) Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J 27:876–885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. José M. Sogo for the patient coaching while learning these techniques. We wish to thank Gery Barmettler, Bruno Guhl, Andres Kaech, Urs Ziegler, and the whole team at the ZMB (Center for Microscopy and Image Analysis of the University Zurich) for excellent technical assistance running the EM experiments. We are also grateful to Yoshitami Hashimoto, Fabio Puddu, and Vincenzo Costanzo (Clare Hall, Cancer Research UK) for their assistance in optimizing this EM approach on Xenopus egg extracts.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Neelsen, K.J., Chaudhuri, A.R., Follonier, C., Herrador, R., Lopes, M. (2014). Visualization and Interpretation of Eukaryotic DNA Replication Intermediates In Vivo by Electron Microscopy. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics