Skip to main content

Deep Learning–Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction

  • Protocol
  • First Online:
Computational Methods for Predicting Post-Translational Modification Sites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2499))

Abstract

Posttranslational modification (PTM ) is a ubiquitous phenomenon in both eukaryotes and prokaryotes which gives rise to enormous proteomic diversity. PTM mostly comes in two flavors: covalent modification to polypeptide chain and proteolytic cleavage. Understanding and characterization of PTM is a fundamental step toward understanding the underpinning of biology. Recent advances in experimental approaches, mainly mass-spectrometry-based approaches, have immensely helped in obtaining and characterizing PTMs. However, experimental approaches are not enough to understand and characterize more than 450 different types of PTMs and complementary computational approaches are becoming popular. Recently, due to the various advancements in the field of Deep Learning (DL), along with the explosion of applications of DL to various fields, the field of computational prediction of PTM has also witnessed the development of a plethora of deep learning (DL)-based approaches. In this book chapter, we first review some recent DL-based approaches in the field of PTM site prediction. In addition, we also review the recent advances in the not-so-studied PTM , that is, proteolytic cleavage predictions. We describe advances in PTM prediction by highlighting the Deep learning architecture, feature encoding, novelty of the approaches, and availability of the tools/approaches. Finally, we provide an outlook and possible future research directions for DL-based approaches for PTM prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I (2019) Protein post-translational modifications in bacteria. Nat Rev Microbiol 17(11):651–664. https://doi.org/10.1038/s41579-019-0243-0

    Article  CAS  PubMed  Google Scholar 

  2. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  3. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806. https://doi.org/10.1038/nmeth1100

    Article  CAS  PubMed  Google Scholar 

  4. Nakai K, Kanehisa M (1988) Prediction of in-vivo modification sites of proteins from their primary structures. J Biochem 104(5):693–699. https://doi.org/10.1093/oxfordjournals.jbchem.a122535

    Article  CAS  PubMed  Google Scholar 

  5. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362. https://doi.org/10.1006/jmbi.1999.3310

    Article  CAS  PubMed  Google Scholar 

  6. Plewczynski D, Tkacz A, Godzik A, Rychlewski L (2005) A support vector machine approach to the identification of phosphorylation sites. Cell Mol Biol Lett 10(1):73–89

    CAS  PubMed  Google Scholar 

  7. Eisenhaber B, Eisenhaber F (2010) Prediction of posttranslational modification of proteins from their amino acid sequence. Methods Mol Biol 609:365–384. https://doi.org/10.1007/978-1-60327-241-4_21

    Article  CAS  PubMed  Google Scholar 

  8. Trost B, Kusalik A (2011) Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27(21):2927–2935. https://doi.org/10.1093/bioinformatics/btr525

    Article  CAS  PubMed  Google Scholar 

  9. Audagnotto M, Dal Peraro M (2017) Protein post-translational modifications: in silico prediction tools and molecular modeling. Comput Struct Biotechnol J 15:307–319. https://doi.org/10.1016/j.csbj.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosci 45:135

    Article  CAS  Google Scholar 

  11. Wen B, Zeng WF, Liao Y, Shi Z, Savage SR, Jiang W, Zhang B (2020) Deep learning in proteomics. Proteomics 20(21–22):e1900335. https://doi.org/10.1002/pmic.201900335

    Article  CAS  PubMed  Google Scholar 

  12. Barrett AJ, Rawlings ND, Woessner JF (2004) Handbook of proteolytic enzymes, 2nd edn. Academic, Amsterdam

    Google Scholar 

  13. Klein T, Eckhard U, Dufour A, Solis N, Overall CM (2018) Proteolytic cleavage-mechanisms, function, and "omic" approaches for a near-ubiquitous posttranslational modification. Chem Rev 118(3):1137–1168. https://doi.org/10.1021/acs.chemrev.7b00120

    Article  CAS  PubMed  Google Scholar 

  14. Rogers LD, Overall CM (2013) Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteomics 12(12):3532–3542. https://doi.org/10.1074/mcp.M113.031310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denadai-Souza A, Bonnart C, Tapias NS, Marcellin M, Gilmore B, Alric L, Bonnet D, Burlet-Schiltz O, Hollenberg MD, Vergnolle N, Deraison C (2018) Functional proteomic profiling of secreted serine proteases in health and inflammatory bowel disease. Sci Rep 8(1):7834. https://doi.org/10.1038/s41598-018-26282-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uliana F, Vizovisek M, Acquasaliente L, Ciuffa R, Fossati A, Frommelt F, Goetze S, Wollscheid B, Gstaiger M, De Filippis V, Auf dem Keller U, Aebersold R (2021) Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nat Commun 12(1):1693. https://doi.org/10.1038/s41467-021-21754-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–D632. https://doi.org/10.1093/nar/gkx1134

    Article  CAS  PubMed  Google Scholar 

  18. Igarashi Y, Eroshkin A, Gramatikova S, Gramatikoff K, Zhang Y, Smith JW, Osterman AL, Godzik A (2007) CutDB: a proteolytic event database. Nucleic Acids Res 35(Database issue):D546–D549. https://doi.org/10.1093/nar/gkl813

    Article  CAS  PubMed  Google Scholar 

  19. Garay-Malpartida HM, Occhiucci JM, Alves J, Belizario JE (2005) CaSPredictor: a new computer-based tool for caspase substrate prediction. Bioinformatics 21(Suppl 1):i169–i176. https://doi.org/10.1093/bioinformatics/bti1034

    Article  CAS  PubMed  Google Scholar 

  20. Verspurten J, Gevaert K, Declercq W, Vandenabeele P (2009) SitePredicting the cleavage of proteinase substrates. Trends Biochem Sci 34(7):319–323. https://doi.org/10.1016/j.tibs.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  21. Wee LJ, Tan TW, Ranganathan S (2007) CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics 23(23):3241–3243. https://doi.org/10.1093/bioinformatics/btm334

    Article  CAS  PubMed  Google Scholar 

  22. Song J, Tan H, Shen H, Mahmood K, Boyd SE, Webb GI, Akutsu T, Whisstock JC (2010) Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics 26(6):752–760. https://doi.org/10.1093/bioinformatics/btq043

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Zhao XM, Tan H, Akutsu T, Whisstock JC, Song J (2014) Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets. Bioinformatics 30(1):71–80. https://doi.org/10.1093/bioinformatics/btt603

    Article  CAS  PubMed  Google Scholar 

  24. Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, Chou KC, Webb GI, Pike RN, Hancock J (2018) PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics 34(4):684–687. https://doi.org/10.1093/bioinformatics/btx670

    Article  CAS  PubMed  Google Scholar 

  25. Song J, Tan H, Boyd SE, Shen H, Mahmood K, Webb GI, Akutsu T, Whisstock JC, Pike RN (2011) Bioinformatic approaches for predicting substrates of proteases. J Bioinforma Comput Biol 9(1):149–178. https://doi.org/10.1142/s0219720011005288

    Article  CAS  Google Scholar 

  26. duVerle DA, Mamitsuka H (2012) A review of statistical methods for prediction of proteolytic cleavage. Brief Bioinform 13(3):337–349. https://doi.org/10.1093/bib/bbr059

    Article  CAS  PubMed  Google Scholar 

  27. Bao Y, Marini S, Tamura T, Kamada M, Maegawa S, Hosokawa H, Song J, Akutsu T (2019) Toward more accurate prediction of caspase cleavage sites: a comprehensive review of current methods, tools and features. Brief Bioinform 20(5):1669–1684. https://doi.org/10.1093/bib/bby041

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Wang Y, Li C, Marquez-Lago TT, Leier A, Rawlings ND, Haffari G, Revote J, Akutsu T, Chou KC, Purcell AW, Pike RN, Webb GI, Ian Smith A, Lithgow T, Daly RJ, Whisstock JC, Song J (2019) Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Brief Bioinform 20(6):2150–2166. https://doi.org/10.1093/bib/bby077

    Article  CAS  PubMed  Google Scholar 

  29. Suo SB, Qiu JD, Shi SP, Sun XY, Huang SY, Chen X, Liang RP (2012) Position-specific analysis and prediction for protein lysine acetylation based on multiple features. PLoS One 7(11):e49108. https://doi.org/10.1371/journal.pone.0049108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou T, Zheng G, Zhang P, Jia J, Li J, Xie L, Wei C, Li Y (2014) LAceP: lysine acetylation site prediction using logistic regression classifiers. PLoS One 9(2):e89575. https://doi.org/10.1371/journal.pone.0089575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee TY, Hsu JB, Lin FM, Chang WC, Hsu PC, Huang HD (2010) N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J Comput Chem 31(15):2759–2771. https://doi.org/10.1002/jcc.21569

    Article  CAS  PubMed  Google Scholar 

  32. Wu M, Yang Y, Wang H, Xu Y (2019) A deep learning method to more accurately recall known lysine acetylation sites. BMC Bioinformatics 20(1):49. https://doi.org/10.1186/s12859-019-2632-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu B, Yu ZM, Chen C, Ma AJ, Liu BQ, Tian BG, Ma Q (2020) DNNAce: prediction of prokaryote lysine acetylation sites through deep neural networks with multi-information fusion. Chemometr Intell Lab 200. https://doi.org/10.1016/j.chemolab.2020.103999

  34. Chen G, Cao M, Luo K, Wang L, Wen P, Shi S (2018) ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization. Bioinformatics 34(23):3999–4006. https://doi.org/10.1093/bioinformatics/bty444

    Article  CAS  PubMed  Google Scholar 

  35. Yu K, Zhang Q, Liu Z, Du Y, Gao X, Zhao Q, Cheng H, Li X, Liu ZX (2020) Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Brief Bioinform 21(5):1798–1805. https://doi.org/10.1093/bib/bbz107

    Article  CAS  PubMed  Google Scholar 

  36. Taherzadeh G, Dehzangi A, Golchin M, Zhou Y, Campbell MP (2019) SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Bioinformatics 35(20):4140–4146. https://doi.org/10.1093/bioinformatics/btz215

    Article  CAS  PubMed  Google Scholar 

  37. Ismail HD, Newman RH, Kc DB (2016) RF-Hydroxysite: a random forest based predictor for hydroxylation sites. Mol BioSyst 12(8):2427–2435. https://doi.org/10.1039/c6mb00179c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Wen X, Shao XJ, Deng NY, Chou KC (2014) iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci 15(5):7594–7610. https://doi.org/10.3390/ijms15057594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ehsan A, Mahmood MK, Khan YD, Barukab OM, Khan SA, Chou KC (2019) iHyd-PseAAC (EPSV): identifying hydroxylation sites in proteins by extracting enhanced position and sequence variant feature via Chou's 5-step rule and general pseudo amino acid composition. Curr Genomics 20(2):124–133. https://doi.org/10.2174/1389202920666190325162307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu WR, Sun BQ, Xiao X, Xu ZC, Chou KC (2016) iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 7(28):44310–44321. https://doi.org/10.18632/oncotarget.10027

    Article  PubMed  PubMed Central  Google Scholar 

  41. Long H, Liao B, Xu X, Yang J (2018) A hybrid deep learning model for predicting protein hydroxylation sites. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092817

  42. Wang MH, Cui XW, Li S, Yang XH, Ma AJ, Zhang YS, Yu B (2020) DeepMal: accurate prediction of protein malonylation sites by deep neural networks. Chemometr Intell Lab 207. https://doi.org/10.1016/j.chemolab.2020.104175

  43. Zhang Y, Xie R, Wang J, Leier A, Marquez-Lago TT, Akutsu T, Webb GI, Chou KC, Song J (2019) Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Brief Bioinform 20(6):2185–2199. https://doi.org/10.1093/bib/bby079

    Article  CAS  PubMed  Google Scholar 

  44. Al-Barakati H, Thapa N, Hiroto S, Roy K, Newman RH, Kc D (2020) RF-MaloSite and DL-Malosite: methods based on random forest and deep learning to identify malonylation sites. Comput Struct Biotechnol J 18:852–860. https://doi.org/10.1016/j.csbj.2020.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo F, Wang M, Liu Y, Zhao XM, Li A (2019) DeepPhos: prediction of protein phosphorylation sites with deep learning. Bioinformatics 35(16):2766–2773. https://doi.org/10.1093/bioinformatics/bty1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taherzadeh G, Yang Y, Xu H, Xue Y, Liew AW, Zhou Y (2018) Predicting lysine-malonylation sites of proteins using sequence and predicted structural features. J Comput Chem 39(22):1757–1763. https://doi.org/10.1002/jcc.25353

    Article  CAS  PubMed  Google Scholar 

  47. Chung CR, Chang YP, Hsu YL, Chen S, Wu LC, Horng JT, Lee TY (2020) Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins. Sci Rep 10(1):10541. https://doi.org/10.1038/s41598-020-67384-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dou Y, Yao B, Zhang C (2014) PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids 46(6):1459–1469. https://doi.org/10.1007/s00726-014-1711-5

    Article  CAS  PubMed  Google Scholar 

  49. Ismail HD, Jones A, Kim JH, Newman RH, Kc DB (2016) RF-Phos: a novel general phosphorylation site prediction tool based on random forest. Biomed Res Int 2016:3281590. https://doi.org/10.1155/2016/3281590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song J, Wang H, Wang J, Leier A, Marquez-Lago T, Yang B, Zhang Z, Akutsu T, Webb GI, Daly RJ (2017) PhosphoPredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci Rep 7(1):6862. https://doi.org/10.1038/s41598-017-07199-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, Xu D (2017) MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 33(24):3909–3916. https://doi.org/10.1093/bioinformatics/btx496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue Y, Li A, Wang L, Feng H, Yao X (2006) PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics 7:163. https://doi.org/10.1186/1471-2105-7-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600. https://doi.org/10.1074/mcp.M110.001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7(9):1598–1608. https://doi.org/10.1074/mcp.M700574-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thapa N, Chaudhari M, Iannetta AA, White C, Roy K, Newman RH, Hicks LM, Kc DB (2021) A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites. Sci Rep 11(1):12550. https://doi.org/10.1038/s41598-021-91840-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo L, Wang Y, Xu X, Cheng KK, Long Y, Xu J, Li S, Dong J (2021) DeepPSP: a global-local information-based deep neural network for the prediction of protein phosphorylation sites. J Proteome Res 20(1):346–356. https://doi.org/10.1021/acs.jproteome.0c00431

    Article  CAS  PubMed  Google Scholar 

  57. Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT, Webb GI, Baggag A, Bensmail H, Song J (2020) PROSPECT: a web server for predicting protein histidine phosphorylation sites. J Bioinforma Comput Biol 18(4):2050018. https://doi.org/10.1142/S0219720020500183

    Article  CAS  Google Scholar 

  58. Chaudhari M, Thapa N, Ismail H, Chopade S, Caragea D, Kohn M, Newman RH, Kc DB (2021) DTL-DephosSite: deep transfer learning based approach to predict dephosphorylation sites. Front Cell Dev Biol 9:662983. https://doi.org/10.3389/fcell.2021.662983

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu Y, Ding YX, Ding J, Lei YH, Wu LY, Deng NY (2015) iSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity. Sci Rep 5:10184. https://doi.org/10.1038/srep10184

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jia J, Liu Z, Xiao X, Liu B, Chou KC (2016) iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem 497:48–56. https://doi.org/10.1016/j.ab.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  61. Jia J, Liu Z, Xiao X, Liu B, Chou KC (2016) pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 394:223–230. https://doi.org/10.1016/j.jtbi.2016.01.020

    Article  CAS  PubMed  Google Scholar 

  62. Huang KY, Hsu JB, Lee TY (2019) Characterization and identification of lysine succinylation sites based on deep learning method. Sci Rep 9(1):16175. https://doi.org/10.1038/s41598-019-52552-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thapa N, Chaudhari M, McManus S, Roy K, Newman RH, Saigo H, Kc DB (2020) DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction. BMC Bioinformatics 21(Suppl 3):63. https://doi.org/10.1186/s12859-020-3342-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hasan MM, Kurata H (2018) GPSuc: global prediction of generic and species-specific succinylation sites by aggregating multiple sequence features. PLoS One 13(10):e0200283. https://doi.org/10.1371/journal.pone.0200283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ning Q, Zhao X, Bao L, Ma Z, Zhao X (2018) Detecting succinylation sites from protein sequences using ensemble support vector machine. BMC Bioinformatics 19(1):237. https://doi.org/10.1186/s12859-018-2249-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang H, Zhao H, Yan Z, Zhao J, Han J (2021) MDCAN-Lys: a model for predicting succinylation sites based on multilane dense convolutional attention network. Biomol Ther 11(6). https://doi.org/10.3390/biom11060872

  67. Hasan MM, Yang S, Zhou Y, Mollah MN (2016) SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Mol BioSyst 12(3):786–795. https://doi.org/10.1039/c5mb00853k

    Article  CAS  PubMed  Google Scholar 

  68. Ning W, Xu H, Jiang P, Cheng H, Deng W, Guo Y, Xue Y (2020) HybridSucc: a hybrid-learning architecture for general and species-specific succinylation site prediction. Genomics Proteomics Bioinformatics 18(2):194–207. https://doi.org/10.1016/j.gpb.2019.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fu H, Yang Y, Wang X, Wang H, Xu Y (2019) DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins. BMC Bioinformatics 20(1):86. https://doi.org/10.1186/s12859-019-2677-9

    Article  PubMed  PubMed Central  Google Scholar 

  70. He F, Wang R, Li J, Bao L, Xu D, Zhao X (2018) Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture. BMC Syst Biol 12(Suppl 6):109. https://doi.org/10.1186/s12918-018-0628-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Siraj A, Lim DY, Tayara H, Chong KT (2021) UbiComb: a hybrid deep learning model for predicting plant-specific protein ubiquitylation sites. Genes (Basel) 12(5). https://doi.org/10.3390/genes12050717

  72. Wang H, Wang Z, Li Z, Lee TY (2020) Incorporating deep learning with word embedding to identify plant ubiquitylation sites. Front Cell Dev Biol 8:572195. https://doi.org/10.3389/fcell.2020.572195

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu Y, Li A, Zhao XM, Wang M (2021) DeepTL-Ubi: a novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species. Methods 192:103–111. https://doi.org/10.1016/j.ymeth.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  74. Wang D, Liu D, Yuchi J, He F, Jiang Y, Cai S, Li J, Xu D (2020) MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res 48(W1):W140–W146. https://doi.org/10.1093/nar/gkaa275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li S, Yu K, Wu G, Zhang Q, Wang P, Zheng J, Liu ZX, Wang J, Gao X, Cheng H (2021) pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front Cell Dev Biol 9:617366. https://doi.org/10.3389/fcell.2021.617366

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen Z, Liu X, Li F, Li C, Marquez-Lago T, Leier A, Akutsu T, Webb GI, Xu D, Smith AI, Li L, Chou KC, Song J (2019) Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief Bioinform 20(6):2267–2290. https://doi.org/10.1093/bib/bby089

    Article  CAS  PubMed  Google Scholar 

  77. Yang Y, Wang H, Li W, Wang X, Wei S, Liu Y, Xu Y (2021) Prediction and analysis of multiple protein lysine modified sites based on conditional wasserstein generative adversarial networks. BMC Bioinformatics 22(1):171. https://doi.org/10.1186/s12859-021-04101-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lv H, Dao FY, Guan ZX, Yang H, Li YW, Lin H (2021) Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method. Brief Bioinform 22(4). https://doi.org/10.1093/bib/bbaa255

  79. Chen YZ, Wang ZZ, Wang Y, Ying G, Chen Z, Song J (2021) nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Brief Bioinform 22:bbab146. https://doi.org/10.1093/bib/bbab146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaudhari M, Thapa N, Roy K, Newman RH, Saigo H, KC BD (2020) DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins. Mol Omics 16(5):448–454. https://doi.org/10.1039/d0mo00025f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xie Y, Luo X, Li Y, Chen L, Ma W, Huang J, Cui J, Zhao Y, Xue Y, Zuo Z, Ren J (2018) DeepNitro: prediction of protein nitration and nitrosylation sites by deep learning. Genomics Proteomics Bioinformatics 16(4):294–306. https://doi.org/10.1016/j.gpb.2018.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ning W, Jiang P, Guo Y, Wang C, Tan X, Zhang W, Peng D, Xue Y (2021) GPS-Palm: a deep learning–based graphic presentation system for the prediction of S-palmitoylation sites in proteins. Brief Bioinform 22(2):1836–1847. https://doi.org/10.1093/bib/bbaa038

    Article  CAS  PubMed  Google Scholar 

  83. Song J, Tan H, Perry AJ, Akutsu T, Webb GI, Whisstock JC, Pike RN (2012) PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One 7(11):e50300. https://doi.org/10.1371/journal.pone.0050300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Song J, Wang Y, Li F, Akutsu T, Rawlings ND, Webb GI, Chou KC (2019) iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 20(2):638–658. https://doi.org/10.1093/bib/bby028

    Article  CAS  PubMed  Google Scholar 

  85. Li F, Leier A, Liu Q, Wang Y, Xiang D, Akutsu T, Webb GI, Smith AI, Marquez-Lago T, Li J, Song J (2020) Procleave: predicting protease-specific substrate cleavage sites by combining sequence and structural information. Genomics Proteomics Bioinformatics 18(1):52–64. https://doi.org/10.1016/j.gpb.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liu ZX, Yu K, Dong J, Zhao L, Liu Z, Zhang Q, Li S, Du Y, Cheng H (2019) Precise prediction of calpain cleavage sites and their aberrance caused by mutations in cancer. Front Genet 10:715. https://doi.org/10.3389/fgene.2019.00715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Z, Cao J, Gao X, Ma Q, Ren J, Xue Y (2011) GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS One 6(4):e19001. https://doi.org/10.1371/journal.pone.0019001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fan YX, Zhang Y, Shen HB (2013) LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins 81(4):622–634. https://doi.org/10.1002/prot.24217

    Article  CAS  PubMed  Google Scholar 

  89. Boyd SE, Garcia de la Banda M, Pike RN, Whisstock JC, Rudy GB (2004) PoPS: a computational tool for modeling and predicting protease specificity. Proc IEEE Comput Syst Bioinform Conf:372–381. https://doi.org/10.1109/csb.2004.1332450

  90. Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, Revote J, Smith AI, Akutsu T, Webb GI, Kurgan L, Song J (2020) DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 36(4):1057–1065. https://doi.org/10.1093/bioinformatics/btz721

    Article  CAS  PubMed  Google Scholar 

  91. Yang J, Gao Z, Ren X, Sheng J, Xu P, Chang C, Fu Y (2021) DeepDigest: prediction of protein proteolytic digestion with deep learning. Anal Chem 93(15):6094–6103. https://doi.org/10.1021/acs.analchem.0c04704

    Article  CAS  PubMed  Google Scholar 

  92. Lawless C, Hubbard SJ (2012) Prediction of missed proteolytic cleavages for the selection of surrogate peptides for quantitative proteomics. OMICS 16(9):449–456. https://doi.org/10.1089/omi.2011.0156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, Li F, Griffiths CEM, Watson REB, Song J, Bell M, Sherratt MJ (2021) Predicting proteolysis in complex proteomes using deep learning. Int J Mol Sci 22(6). https://doi.org/10.3390/ijms22063071

  94. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dukka B. KC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pakhrin, S.C., Pokharel, S., Saigo, H., KC, D.B. (2022). Deep Learning–Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction. In: KC, D.B. (eds) Computational Methods for Predicting Post-Translational Modification Sites. Methods in Molecular Biology, vol 2499. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2317-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2317-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2316-9

  • Online ISBN: 978-1-0716-2317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics