Skip to main content

Affinity and Stability Analysis of Yeast Displayed Proteins

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Yeast surface display is a powerful protein engineering technology that is extensively used to improve various properties of proteins, including affinity, specificity, and stability or even to add novel functions (usually ligand binding). Apart from its robustness and versatility as an engineering tool, yeast display offers a further critical advantage: Once the selection campaign is finished, usually resulting in an oligoclonal pool, these enriched protein variants can be analyzed individually on the surface of yeast without the need for any sub-cloning, soluble expression, and purification. Here, we provide detailed protocols for determining both the affinity and the thermal stability of yeast displayed proteins. In addition, we discuss the advantages, challenges, and potential pitfalls associated with affinity and stability analysis using yeast surface display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

  3. Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11(2):127–134. https://doi.org/10.2174/138620708783744516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angelini A, Chen TF, de Picciotto S, Yang NJ, Tzeng A, Santos MS, Van Deventer JA, Traxlmayr MW, Wittrup KD (2015) Protein engineering and selection using yeast surface display. Methods Mol Biol 1319:3–36. https://doi.org/10.1007/978-1-4939-2748-7_1

    Article  PubMed  Google Scholar 

  5. Decanniere K, Transue TR, Desmyter A, Maes D, Muyldermans S, Wyns L (2001) Degenerate interfaces in antigen-antibody complexes. J Mol Biol 313(3):473–478. https://doi.org/10.1006/jmbi.2001.5075

    Article  CAS  PubMed  Google Scholar 

  6. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17(4):467–473. https://doi.org/10.1016/j.sbi.2007.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lipovsek D, Antipov E, Armstrong KA, Olsen MJ, Klibanov AM, Tidor B, Wittrup KD (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14(10):1176–1185. https://doi.org/10.1016/j.chembiol.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  8. Traxlmayr MW, Faissner M, Stadlmayr G, Hasenhindl C, Antes B, Ruker F, Obinger C (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 1824(4):542–549. https://doi.org/10.1016/j.bbapap.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526(2):174–180. https://doi.org/10.1016/j.abb.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  10. Traxlmayr MW, Kiefer JD, Srinivas RR, Lobner E, Tisdale AW, Mehta NK, Yang NJ, Tidor B, Wittrup KD (2016) Strong enrichment of aromatic residues in binding sites from a charge-neutralized hyperthermostable Sso7d scaffold library. J Biol Chem 291(43):22496–22508. https://doi.org/10.1074/jbc.M116.741314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zajc CU, Dobersberger M, Schaffner I, Mlynek G, Puhringer D, Salzer B, Djinovic-Carugo K, Steinberger P, De Sousa LA, Yang NJ, Obinger C, Holter W, Traxlmayr MW, Lehner M (2020) A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc Natl Acad Sci U S A 117(26):14926–14935. https://doi.org/10.1073/pnas.1911154117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kauke MJ, Traxlmayr MW, Parker JA, Kiefer JD, Knihtila R, McGee J, Verdine G, Mattos C, Wittrup KD (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci Rep 7(1):5831. https://doi.org/10.1038/s41598-017-05889-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104(16):6632–6637. https://doi.org/10.1073/pnas.0700149104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368(4):1024–1041. https://doi.org/10.1016/j.jmb.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  15. Razai A, Garcia-Rodriguez C, Lou J, Geren IN, Forsyth CM, Robles Y, Tsai R, Smith TJ, Smith LA, Siegel RW, Feldhaus M, Marks JD (2005) Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351(1):158–169. https://doi.org/10.1016/j.jmb.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97(20):10701–10705. https://doi.org/10.1073/pnas.170297297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Midelfort KS, Wittrup KD (2006) Context-dependent mutations predominate in an engineered high-affinity single chain antibody fragment. Protein Sci 15(2):324–334. https://doi.org/10.1110/ps.051842406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchanski T, Zogg T, Yin J, Yuan D, Wohlkonig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9(1):382. https://doi.org/10.1038/s41598-018-37212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akiba H, Tamura H, Kiyoshi M, Yanaka S, Sugase K, Caaveiro JMM, Tsumoto K (2019) Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Sci Rep 9(1):15481. https://doi.org/10.1038/s41598-019-50722-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103(12):4586–4591. https://doi.org/10.1073/pnas.0505379103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  22. Hunter SA, Cochran JR (2016) Cell-binding assays for determining the affinity of protein-protein interactions: technologies and considerations. Methods Enzymol 580:21–44. https://doi.org/10.1016/bs.mie.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Julian MC, Lee CC, Tiller KE, Rabia LA, Day EK, Schick AJ III, Tessier PM (2015) Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel 28(10):339–350. https://doi.org/10.1093/protein/gzv050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Julian MC, Li L, Garde S, Wilen R, Tessier PM (2017) Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability. Sci Rep 7:45259. https://doi.org/10.1038/srep45259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teufl M, Zajc CU, Traxlmayr MW (2022) Engineering Strategies to Overcome the Stability−Function Trade-2 Off in Proteins. ACS Synth Biol. https://doi.org/10.1021/acssynbio.1c00512

  26. Hackel BJ, Ackerman ME, Howland SW, Wittrup KD (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401(1):84–96. https://doi.org/10.1016/j.jmb.2010.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasenhindl C, Traxlmayr MW, Wozniak-Knopp G, Jones PC, Stadlmayr G, Rüker F, Obinger C (2013) Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc. Protein Eng Des Sel 26(10):675–682. https://doi.org/10.1093/protein/gzt041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381(2):324–340. https://doi.org/10.1016/j.jmb.2008.05.063

    Article  CAS  PubMed  Google Scholar 

  29. Orr BA, Carr LM, Wittrup KD, Roy EJ, Kranz DM (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19(2):631–638. https://doi.org/10.1021/bp0200797

    Article  CAS  PubMed  Google Scholar 

  30. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60(1):15–26. https://doi.org/10.1016/j.ymeth.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  31. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14(1):55–62. https://doi.org/10.1021/bp970144q

    Article  CAS  PubMed  Google Scholar 

  32. Laurent E, Sieber A, Salzer B, Wachernig A, Seigner J, Lehner M, Geyeregger R, Kratzer B, Jager U, Kunert R, Pickl WF, Traxlmayr MW (2021) Directed evolution of stabilized monomeric CD19 for monovalent CAR interaction studies and monitoring of CAR-T cell patients. ACS Synth Biol 10(5):1184–1198. https://doi.org/10.1021/acssynbio.1c00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF Project W1224—Doctoral Program on Biomolecular Technology of Proteins—BioToP) and by the Federal Ministry for Digital and Economic Affairs of Austria and the National Foundation for Research, Technology and Development of Austria to the Christian Doppler Research Association (Christian Doppler Laboratory for Next Generation CAR T Cells).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Traxlmayr .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zajc, C.U., Teufl, M., Traxlmayr, M.W. (2022). Affinity and Stability Analysis of Yeast Displayed Proteins. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics