Skip to main content

High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF

  • Protocol
  • First Online:
Proteomics in Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2456))

Abstract

Ion mobility separation is becoming an integral part in mass spectrometry-based proteomics. Here we describe the use of a trapped ion mobility-quadrupole time-of-flight (TIMS-QTOF) mass spectrometer for high-throughput label-free quantification with data-independent acquisition. The parallel accumulation-serial fragmentation (PASEF) operation mode positions the mass-selecting quadrupole as a function of the TIMS separation, which allows highly efficient data-independent acquisition schemes (dia-PASEF), but also increases complexity in the method design. We provide a step-by-step protocol for instrument setup, method design, data acquisition and ion mobility-aware, library-based data analysis with Spectronaut. We highlight key acquisition parameters and illustrate their optimization for short gradients. Using the EvosepOne liquid chromatography system, we demonstrate expected results for the analysis of a human cancer cell line at a throughput of 60 samples per day, leading to the quantification of about 6000 protein groups with very high reproducibility. Importantly, the protocol can be readily adapted to other gradients and sample types such as modified peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16:269–280. https://doi.org/10.1038/nrm3970

    Article  CAS  PubMed  Google Scholar 

  2. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355. https://doi.org/10.1038/nature19949

    Article  CAS  PubMed  Google Scholar 

  3. Riley NM, Hebert AS, Coon JJ (2016) Proteomics moves into the fast lane. Cell Syst 2:142–143. https://doi.org/10.1016/j.cels.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  4. Dodds JN, Baker ES (2019) Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom 30:2185–2195. https://doi.org/10.1007/s13361-019-02288-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfammatter S, Bonneil E, McManus FP et al (2018) A novel differential ion mobility device expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements. Mol Cell Proteomics 17:2051–2067. https://doi.org/10.1074/mcp.TIR118.000862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hebert AS, Prasad S, Belford MW et al (2018) Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal Chem 90:9529–9537. https://doi.org/10.1021/acs.analchem.8b02233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meier F, Brunner A-D, Koch S et al (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteomics 17:2534–2545. https://doi.org/10.1074/mcp.TIR118.000900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bekker-Jensen DB, Martínez-Val A, Steigerwald S et al (2020) A compact quadrupole-orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients. Mol Cell Proteomics 19:716–729. https://doi.org/10.1074/mcp.tir119.001906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Revercomb HE, Mason E, a. (1975) Theory of plasma chromatography/gaseous electrophoresis. Rev Anal Chem 47:970–983. https://doi.org/10.1021/ac60357a043

    Article  CAS  Google Scholar 

  10. Fernandez-Lima F, Kaplan D, Suetering J, Park MA (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14:93–98. https://doi.org/10.1007/s12127-011-0067-8

    Article  Google Scholar 

  11. Fernandez-Lima FA, Kaplan DA, Park MA (2011) Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev Sci Instrum 82:126106. https://doi.org/10.1063/1.3665933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridgeway ME, Lubeck M, Jordens J et al (2018) Trapped ion mobility spectrometry: a short review. Int J Mass Spectrom 425:22–35. https://doi.org/10.1016/j.ijms.2018.01.006

    Article  CAS  Google Scholar 

  13. Michelmann K, Silveira JA, Ridgeway ME, Park MA (2014) Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom 26:14–24. https://doi.org/10.1007/s13361-014-0999-4

    Article  CAS  PubMed  Google Scholar 

  14. Silveira JA, Ridgeway ME, Laukien FH et al (2017) Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. Int J Mass Spectrom 413:168–175. https://doi.org/10.1016/j.ijms.2016.03.004

    Article  CAS  Google Scholar 

  15. Meier F, Beck S, Grassl N et al (2015) Parallel accumulation–serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J Proteome Res 14:5378–5387. https://doi.org/10.1021/acs.jproteome.5b00932

    Article  CAS  PubMed  Google Scholar 

  16. Vasilopoulou CG, Sulek K, Brunner A-D et al (2020) Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun 11:331. https://doi.org/10.1038/s41467-019-14044-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meier F, Brunner A-D, Frank M et al (2020) diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat Methods 17:1229–1236. https://doi.org/10.1038/s41592-020-00998-0

    Article  CAS  PubMed  Google Scholar 

  18. Kulak NA, Pichler G, Paron I et al (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319–324. https://doi.org/10.1038/nmeth.2834

    Article  CAS  PubMed  Google Scholar 

  19. Bache N, Geyer PE, Bekker-Jensen DB et al (2018) A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol Cell Proteomics 17(11):2284–2296. https://doi.org/10.1101/323048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruderer R, Bernhardt OM, Gandhi T et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410. https://doi.org/10.1074/mcp.M114.044305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. https://doi.org/10.1074/mcp.O111.016717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulak NA, Geyer PE, Mann M (2017) Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol Cell Proteomics 16(4):694–705. https://doi.org/10.1074/mcp.O116.065136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  24. Pino LK, Searle BC, Bollinger JG et al (2020) The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 39:229–244. https://doi.org/10.1002/mas.21540

    Article  CAS  PubMed  Google Scholar 

  25. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223. https://doi.org/10.1038/nbt.2841

    Article  CAS  PubMed  Google Scholar 

  26. Demichev V, Messner CB, Vernardis SI et al (2020) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17:41–44. https://doi.org/10.1038/s41592-019-0638-x

    Article  CAS  PubMed  Google Scholar 

  27. Demichev V, Yu F, Teo GC, et al (2021) High sensitivity dia-PASEF proteomics with DIA-NN and FragPipe. bioRxiv. https://doi.org/10.1101/2021.03.08.434385

  28. Zhang F, Ge W, Ruan G et al (2020) Data-independent acquisition mass spectrometry-based proteomics and software tools: a glimpse in 2020. Proteomics 20:1900276. https://doi.org/10.1002/pmic.201900276

    Article  CAS  Google Scholar 

  29. Meier F, Köhler ND, Brunner A et al (2021) Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nat Commun 12:1185. https://doi.org/10.1038/s41467-021-21352-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Matthias Mann for his generous support of this project. We are grateful to our colleagues in the Department Proteomics and Signal Transduction at the Max Planck Institute of Biochemistry as well as at Bruker Daltonics and Evosep Biosystems for fruitful discussions and valuable feedback. Research in the Department Proteomics and Signal Transduction is supported by the Max Planck Society for the Advancement of Science. F.M. acknowledges support by the Federal Ministry of Education and Research and the Thuringian Ministry for Economic Affairs, Science and a Digital Society through the Joint Federal Government-Länder Tenure-Track Programme and by the Free state of Thuringia and the European Union via the ‘Innovationszentrum für Thüringer Medizintechnik-Lösungen’ (ThIMEDOP; #2018 IZN 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skowronek, P., Meier, F. (2022). High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF. In: Geddes-McAlister, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 2456. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2124-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2124-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2123-3

  • Online ISBN: 978-1-0716-2124-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics