Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2343))

Abstract

The World Health Organization has declared obesity to be a global epidemic that increases cardiovascular disease (CVD) mortality risk factors, such as hypertension, diabetes, dyslipidemia, and atherosclerosis. The increasing ratio of time spent in sedentary activities to that spent performing physically demanding tasks increases the trends to obesity and susceptibility to these risk factors. Dyslipidemia is the foundation of atherosclerotic buildup and lipoproteins serve as cofactors to the inflammatory processes that destabilize plaques. Increasing cardiorespiratory fitness and muscular strength helps attenuate concentrations of low-density lipoproteins (LDLs), such as LDL cholesterol, and increase levels of high-density lipoprotein cholesterol, as well as reduce proprotein convertase subtilisin kexin type 9 expression. Effects of physical activity on the inflammatory pathways of atherosclerosis, specifically C-reactive protein, are more closely related to reducing the levels of adiposity in tandem with increasing fitness, than with exercise training alone. The purpose of this review is to describe the physiology of dyslipidemia and relate it to CVD and exercise therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goff DC Jr, Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MY et al (2006) Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation 113:647–656

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ (2018) Promoting physical activity and exercise: JACC health promotion series. J Am Coll Cardiol 72:1622–1639

    Article  PubMed  Google Scholar 

  4. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359

    Article  PubMed  Google Scholar 

  5. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA et al (2018) The physical activity guidelines for Americans. JAMA 320:2020–2028

    Article  PubMed  Google Scholar 

  6. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

    Article  CAS  PubMed  Google Scholar 

  8. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565

    Article  CAS  PubMed  Google Scholar 

  9. Anderson KM, Castelli WP, Levy D (1987) Cholesterol and mortality: 30 years of follow-up from the Framingham study. JAMA 257:2176–2180

    Article  CAS  PubMed  Google Scholar 

  10. Ference BA, Graham I, Tokgozoglu L, Catapano AL (2018) Impact of lipids on cardiovascular health: JACC health promotion series. J Am Coll Cardiol 72:1141–1156

    Article  CAS  PubMed  Google Scholar 

  11. Lavie CJ, Church TS, Milani RV, Earnest CP (2011) Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J Cardiopulm Rehabil Prev 31:137–145

    Article  PubMed  Google Scholar 

  12. Nissen SE, Tuzcu EM, Schoenhagen P, Crowe T, Sasiela WJ, Tsai J et al (2005) Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 352:29–38

    Article  CAS  PubMed  Google Scholar 

  13. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH et al (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352:20–28

    Article  CAS  PubMed  Google Scholar 

  14. Morrow DA, de Lemos JA, Sabatine MS, Wiviott SD, Blazing MA, Shui A et al (2006) Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor trial. Circulation 114:281–288

    Article  CAS  PubMed  Google Scholar 

  15. Kones R (2010) Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease--a perspective. Drug Des Devel Ther 4:383–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cicoira M, Zanolla L, Franceschini L, Rossi A, Golia G, Zamboni M et al (2001) Skeletal muscle mass independently predicts peak oxygen consumption and ventilatory response during exercise in noncachectic patients with chronic heart failure. J Am Coll Cardiol 37:2080–2085

    Article  CAS  PubMed  Google Scholar 

  17. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN (2019) Sedentary behavior, exercise, and cardiovascular health. Circ Res 124:799–815

    Article  CAS  PubMed  Google Scholar 

  18. Lavie CJ, Kachur S, Sui X (2019) Impact of fitness and changes in fitness on lipids and survival. Prog Cardiovasc Dis 62:431–435

    Article  PubMed  Google Scholar 

  19. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O'Keefe JH et al (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 77:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR et al (2003) Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA 290:1600–1607

    Article  CAS  PubMed  Google Scholar 

  21. Katzmarzyk PT, Church TS, Blair SN (2004) Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med 164:1092–1097

    Article  PubMed  Google Scholar 

  22. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M et al (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301:2024–2035

    Article  CAS  PubMed  Google Scholar 

  23. Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger RS Jr et al (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276:205–210

    Article  CAS  PubMed  Google Scholar 

  24. Lyerly GW, Sui X, Lavie CJ, Church TS, Hand GA, Blair SN (2009) The association between cardiorespiratory fitness and risk of all-cause mortality among women with impaired fasting glucose or undiagnosed diabetes mellitus. Mayo Clin Proc 84:780–786

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee D, Sui X, Artero EG, Lee IM, Church TS, McAuley PA et al (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the aerobics center longitudinal study. Circulation 124:2483–2490

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M (2013) Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet 381:394–399

    Article  CAS  PubMed  Google Scholar 

  27. Kawano M, Shono N, Yoshimura T, Yamaguchi M, Hirano T, Hisatomi A (2009) Improved cardio-respiratory fitness correlates with changes in the number and size of small dense LDL: randomized controlled trial with exercise training and dietary instruction. Intern Med 48:25–32

    Article  PubMed  Google Scholar 

  28. Arsenault BJ, Lachance D, Lemieux I, Alméras N, Tremblay A, Bouchard C et al (2007) Visceral adipose tissue accumulation, cardiorespiratory fitness, and features of the metabolic syndrome. Arch Intern Med 167:1518–1525

    Article  CAS  PubMed  Google Scholar 

  29. Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS (2017) Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 51:494–503

    Article  PubMed  Google Scholar 

  30. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA et al (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39:1423–1434

    Article  PubMed  Google Scholar 

  31. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS et al (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347:1483–1492

    Article  CAS  PubMed  Google Scholar 

  32. Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS et al (1985) (1997) training intensity, blood lipids, and apolipoproteins in men with high cholesterol. J Appl Physiol Bethesda Md 82:270–277

    Google Scholar 

  33. O’Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, Jones DW et al (2005) Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol 98:1619–1625

    Article  PubMed  Google Scholar 

  34. Ozemek C, Laddu DR, Lavie CJ, Claeys H, Kaminsky LA, Ross R et al (2018) An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk. Prog Cardiovasc Dis 61:484–490

    Article  PubMed  Google Scholar 

  35. Kelley G, Kelley K, Tran ZV (2005) Aerobic exercise, lipids and lipoproteins in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Obes 29:881–893

    Article  CAS  Google Scholar 

  36. Kujala UM, Jokelainen J, Oksa H, Saaristo T, Rautio N, Moilanen L et al (2011) Increase in physical activity and cardiometabolic risk profile change during lifestyle intervention in primary healthcare: 1-year follow-up study among individuals at high risk for type 2 diabetes. BMJ Open 1:e000292. https://doi.org/10.1136/bmjopen-2011-000292

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bakker EA, Lee D, Sui X, Eijsvogels TMH, Ortega FB, Lee IM et al (2018) Association of Resistance Exercise with the incidence of hypercholesterolemia in men. Mayo Clin Proc 93:419–428

    Article  PubMed  Google Scholar 

  38. Artero EG, Lee D, Lavie CJ, España-Romero V, Sui X, Church TS et al (2012) Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev 32:351–358

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C et al (2019) Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis 62:86–93

    Article  PubMed  Google Scholar 

  40. Liu Y, Lee DC, Li Y, Zhu W, Zhang R, Sui X et al (2019) Associations of resistance exercise with cardiovascular disease morbidity and mortality. Med Sci Sports Exerc 51:499–508

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schroeder EC, Franke WD, Sharp RL, Lee D (2019) Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: a randomized controlled trial. PLoS One 14:e0210292. https://doi.org/10.1371/journal.pone.0210292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blair SNB, Cooper K, Gibbons L, Gettman LR, Lewis S, Goodyear N (1983) Changes in coronary heart disease risk factors associated with increased treadmill time in 753 men. Am J Epidemiol 118:352–359

    Article  CAS  PubMed  Google Scholar 

  43. Sui X, Sarzynski MA, Lee DC, Kokkinos PF (2017) Impact of changes in cardiorespiratory fitness on hypertension, dyslipidemia and survival: an overview of the epidemiological evidence. Prog Cardiovasc Dis 60:56–66

    Article  PubMed  Google Scholar 

  44. Parto P, Lavie CJ, Swift D, Sui X (2015) The role of cardiorespiratory fitness on plasma lipid levels. Expert Rev Cardiovasc Ther 13:1177–1183

    Article  CAS  PubMed  Google Scholar 

  45. Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN (2012) Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol 59:665–672

    Article  PubMed  PubMed Central  Google Scholar 

  46. Breneman CB, Polinski K, Sarzynski MA, Lavie CJ, Kokkinos PF, Ahmed A et al (2016) The impact of cardiorespiratory fitness levels on the risk of developing Atherogenic dyslipidemia. Am J Med 129:1060–1066

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lavie CJ, Milani RV (1994) Effects of cardiac rehabilitation and exercise training on low-density lipoprotein cholesterol in patients with hypertriglyceridemia and coronary artery disease. Am J Cardiol 74:1192–1195

    Article  CAS  PubMed  Google Scholar 

  48. Lavie CJ, Milani RV (1996) Effects of nonpharmacologic therapy with cardiac rehabilitation and exercise training in patients with low levels of high-density lipoprotein cholesterol. Am J Cardiol 78:1286–1289

    Article  CAS  PubMed  Google Scholar 

  49. Tall AR (2002) Exercise to reduce cardiovascular risk--how much is enough? N Engl J Med 347:1522–1524

    Article  PubMed  Google Scholar 

  50. Park YM, Sui X, Liu J, Zhou H, Kokkinos PF, Lavie CJ et al (2015) The effect of cardiorespiratory fitness on age-related lipids and lipoproteins. J Am Coll Cardiol 65:2091–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB et al (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. J Am Coll Cardiol 44:720–732

    Article  PubMed  Google Scholar 

  52. Wood D, De Backer G, Faergeman O, Graham I, Mancia G, Pyörälä K (1998) Prevention of coronary heart disease in clinical practice: recommendations of the second joint task force of European and other societies on coronary prevention. Atherosclerosis 140:199–270

    Article  CAS  PubMed  Google Scholar 

  53. Zaleski AL, Mentch ML, Pescatello LS, Taylor BA, Capizzi JA, Grimaldi AS et al (2014) Effects of atorvastatin on resting and peak exercise blood pressure among normotensive men and women. Cholesterol 2014:720507. https://doi.org/10.1155/2014/720507

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khush KK, Waters D (2004) Lessons from the PROVE-IT trial. Higher dose of potent statin better for high-risk patients. Cleve Clin J Med 71:609–616

    Article  PubMed  Google Scholar 

  55. Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardpulm Rehabil 22:385–398

    Article  Google Scholar 

  56. Kelley GA, Kelley KS (2006) Aerobic exercise and HDL2-C: a meta-analysis of randomized controlled trials. Atherosclerosis 184:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wosornu D, Bedford D, Ballantyne D (1996) A comparison of the effects of strength and aerobic exercise training on exercise capacity and lipids after coronary artery bypass surgery. Eur Heart J 17:854–863

    Article  CAS  PubMed  Google Scholar 

  58. Yu CM, Li LS, Ho HH, Lau CP (2003) Long-term changes in exercise capacity, quality of life, body anthropometry, and lipid profiles after a cardiac rehabilitation program in obese patients with coronary heart disease. Am J Cardiol 91:321–325

    Article  PubMed  Google Scholar 

  59. Wilhelmsen L, Sanne H, Elmfeldt D, Grimby G, Tibblin G, Wedel H (1975) A controlled trial of physical training after myocardial infarction. Effects on risk factors, nonfatal reinfarction, and death. Prev Med 4:491–508

    Article  CAS  PubMed  Google Scholar 

  60. Marti B, Suter E, Riesen WF et al (1990) Effects of long-term, self-monitored exercise on the serum lipoprotein and apolipoprotein profile in middle-aged men. Atherosclerosis 81:19–31

    Article  CAS  PubMed  Google Scholar 

  61. Belardinelli R, Paolini I, Cianci G, Piva R, Georgiou D, Purcaro A (2001) Exercise training intervention after coronary angioplasty: the ETICA trial. J Am Coll Cardiol 37:1891–1900

    Article  CAS  PubMed  Google Scholar 

  62. Després JP, Moorjani S, Tremblay A, Poehlman ET, Lupien PJ, Nadeau A et al (1988) Heredity and changes in plasma lipids and lipoproteins after short-term exercise training in men. Arterioscler Dallas Tex 8:402–409

    Article  Google Scholar 

  63. Church TS, LaMonte MJ, Barlow CE, Blair SN (2005) Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Arch Intern Med 165:2114–212063

    Article  CAS  PubMed  Google Scholar 

  64. Halverstadt A, Phares DA, Wilund KR et al (2007) Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism 56:444–450

    Article  CAS  PubMed  Google Scholar 

  65. Stevens J, Cai J, Evenson KR, Thomas R (2002) Fitness and fatness as predictors of mortality from all causes and from cardiovascular disease in men and women in the lipid research clinics study. Am J Epidemiol 156:832–841

    Article  PubMed  Google Scholar 

  66. Lee CD, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J ClinNutr 69:373–380

    CAS  Google Scholar 

  67. Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS (2009) Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 60:614–632. https://doi.org/10.1177/0003319708324927

    Article  PubMed  Google Scholar 

  68. Pascot A, Lemieux I, Prud'homme D, Tremblay A, Nadeau A, Couillard C et al (2001) Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 42:2007–2014

    Article  CAS  PubMed  Google Scholar 

  69. Madsen C, Varbo A, Nordestgaard B (2017) Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur Heart J 38:2478–2486

    Article  CAS  PubMed  Google Scholar 

  70. Ko DT, Alter DA, Guo H et al (2016) High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study. J Am Coll Cardiol 68:2073–2083

    Article  CAS  PubMed  Google Scholar 

  71. Bowe B, Xie Y, Xian H, Balasubramanian S, Zayed MA, Al-Aly Z (2016) High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin J Am SocNephrol 11:1784–1793

    Article  CAS  Google Scholar 

  72. Li C, Ford ES, Meng YX, Mokdad AH, Reaven GM (2008) Does the association of the triglyceride to high-density lipoprotein cholesterol ratio with fasting serum insulin differ by race/ethnicity? Cardiovasc Diabetol 7:4. https://doi.org/10.1186/1475-2840-7-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vaara JP, Fogelholm M, Vasankari T, Santtila M, Häkkinen K, Kyröläinen H (2014) Associations of maximal strength and muscular endurance with cardiovascular risk factors. Int J Sports Med 35:356–360

    CAS  PubMed  Google Scholar 

  74. Lavie CJ, Thomas RJ, Squires RW, Allison TG, Milani RV (2009) Exercise training and cardiac rehabilitation in primary and secondary prevention of coronary heart disease. Mayo Clin Proc 84:373–383

    Article  PubMed  PubMed Central  Google Scholar 

  75. Salehi Z, Salehi K, Moeini M, Kargarfard M, Sadeghi M (2017) The effect of resistance exercise on lipid profile of coronary artery disease patients: a randomized clinical trial. Iran J Nurs Midwifery Res 22:112–116

    Article  PubMed  PubMed Central  Google Scholar 

  76. Braith RW, Stewart KJ (2006) Resistance exercise training. Circulation 113:2642–2650

    Article  PubMed  Google Scholar 

  77. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO et al (2017) Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thompson PD (1990) What do muscles have to do with lipoproteins? Circulation 81:1428–1430

    Article  CAS  PubMed  Google Scholar 

  79. Nicklas BJ, Katzel LI, Busby-Whitehead J, Goldberg AP (1997) Increases in high-density lipoprotein cholesterol with endurance exercise training are blunted in obese compared with lean men. Metabolism 46:556–561

    Article  CAS  PubMed  Google Scholar 

  80. Bergeron J, Couillard C, Després JP, Gagnon J, Leon AS, Rao DC et al (2001) Race differences in the response of postheparin plasma lipoprotein lipase and hepatic lipase activities to endurance exercise training in men: results from the HERITAGE family study. Atherosclerosis 159:399–406

    Article  CAS  PubMed  Google Scholar 

  81. Jong M, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism. Arterioscler Thromb Vasc Biol 19:472–484

    Article  CAS  PubMed  Google Scholar 

  82. Nye ER, Carlson K, Kirstein P, Rössner S (1981) Changes in high density lipoprotein subfractions and other lipoproteins by exercise. Clin Chim Acta Int J Clin Chem 113:51–57

    Article  CAS  Google Scholar 

  83. Després JP, Pouliot MC, Moorjani S, Nadeau A, Tremblay A, Lupien PJ et al (1991) Loss of abdominal fat and metabolic response to exercise training in obese women. Am J Phys 261:E159–E167

    Google Scholar 

  84. Gordon PM, Visich PS, Goss FL, Fowler S, Warty V, Denys BJ et al (1996) Comparison of exercise and normal variability on HDL cholesterol concentrations and lipolytic activity. Int J Sports Med 17:332–337

    Article  CAS  PubMed  Google Scholar 

  85. Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med 44:211–221

    Article  PubMed  Google Scholar 

  86. Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174

    Article  CAS  PubMed  Google Scholar 

  87. Tsimikas S, Duff GW, Berger PB, Rogus J, Huttner K, Clopton P et al (2014) Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J Am Coll Cardiol 63:1724–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rawther T, Tabet F (2019) Biology, pathophysiology and current therapies that affect lipoprotein (a) levels. J Mol Cell Cardiol 131:1–11

    Article  CAS  PubMed  Google Scholar 

  89. Dangas G, Mehran R, Harpel PC, Sharma SK, Marcovina SM, Dube G et al (1998) Lipoprotein(a) and inflammation in human coronary atheroma: association with the severity of clinical presentation. J Am Coll Cardiol 32:2035–2042

    Article  CAS  PubMed  Google Scholar 

  90. van Dijk RA, Kolodgie F, Ravandi A, Leibundgut G, Hu PP, Prasad A et al (2012) Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 53:2773–2790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Krychtiuk KA, Kastl SP, Hofbauer SL, Wonnerth A, Goliasch G, Ozsvar-Kozma M et al (2015) Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J Clin Lipidol 9:533–541

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P et al (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520

    Article  CAS  PubMed  Google Scholar 

  93. Rocco DDFM, Okuda LS, Pinto RS, Ferreira FD, Kubo SK, Nakandakare ER et al (2011) Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice. Lipids 46:617–625

    Article  CAS  PubMed  Google Scholar 

  94. Kamani CH, Gencer B, Montecucco F, Courvoisier D, Vuilleumier N, Meyer P et al (2015) Stairs instead of elevators at the workplace decreases PCSK9 levels in a healthy population. Eur J Clin Investig 45:1017–1024

    Article  CAS  Google Scholar 

  95. Wang Y, Xu D (2017) Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis 16:132. https://doi.org/10.1186/s12944-017-0515-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  CAS  PubMed  Google Scholar 

  97. Selvin E, Paynter NP, Erlinger TP (2007) The effect of weight loss on C-reactive protein: a systematic review. Arch Intern Med 167:31–39

    Article  CAS  PubMed  Google Scholar 

  98. Musunuru K, Kral BG, Blumenthal RS, Fuster V, Campbell CY, Gluckman TJ et al (2008) The use of high-sensitivity assays for C-reactive protein in clinical practice. Nat Clin Pract Cardiovasc Med 5:621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lavie CJ, Milani RV, Verma A, O’Keefe JH (2009) C-reactive protein and cardiovascular diseases--is it ready for primetime? Am J Med Sci 338(6):486–492

    Article  PubMed  Google Scholar 

  100. Mohamed-Ali V, Pinkney J, Coppack S (1998) Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 22:1145–1158

    Article  CAS  PubMed  Google Scholar 

  101. Flier JS (1995) The adipocyte: storage depot or node on the energy information superhighway? Cell 80:15–18

    Article  CAS  PubMed  Google Scholar 

  102. Visser M, Bouter L, McQuillan G, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282:2131–2135

    Article  CAS  PubMed  Google Scholar 

  103. Mora S, Lee I-M, Buring JE, Ridker PM (2006) Association of Physical Activity and Body Mass Index with Novel and traditional cardiovascular biomarkers in women. JAMA 295:1412. https://doi.org/10.1001/jama.295.12.1412

    Article  CAS  PubMed  Google Scholar 

  104. Albert MA, Glynn RJ, Ridker PM (2004) Effect of physical activity on serum C-reactive protein. Am J Cardiol 93:221–225

    Article  CAS  PubMed  Google Scholar 

  105. Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Rimm EB (2003) Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res 11:1055–1064

    Article  CAS  PubMed  Google Scholar 

  106. Stauffer BL, Hoetzer GL, Smith DT, DeSouza CA (2004) Plasma C-reactive protein is not elevated in physically active postmenopausal women taking hormone replacement therapy. J Appl Physiol (1985) 96:143–148

    Article  CAS  Google Scholar 

  107. Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153:242–250

    Article  CAS  PubMed  Google Scholar 

  108. LaMonte MJ, Durstine LJ, Yanowitz FG, Lim T, DuBose KD, Davis P et al (2002) Cardiorespiratory fitness and C-reactive protein among a tri-ethnic sample of women. Circulation 106:403–406

    Article  CAS  PubMed  Google Scholar 

  109. Valentine RJ, Vieira VJ, Woods JA, Evans EM (2009) Stronger relationship between central adiposity and C-reactive protein in older women than men. Menopause 16:84–89

    Article  PubMed  Google Scholar 

  110. Lakka TA, Lakka HM, Rankinen T, Leon AS, Rao DC, Skinner JS et al (2005) Effect of exercise training on plasma levels of C-reactive protein in healthy adults: the HERITAGE family study. Eur Heart J 26:2018–2025

    Article  CAS  PubMed  Google Scholar 

  111. Fedewa MV, Hathaway ED, Ward-Ritacco CL (2017) Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br J Sports Med 51:670–676

    Article  PubMed  Google Scholar 

  112. Church TS, Earnest CP, Thompson AM, Priest EL, Rodarte RQ, Saunders T et al (2010) Exercise without weight loss does not reduce C-reactive protein: the INFLAME study. Med Sci Sports Exerc 42:708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hammonds TL, Gathright EC, Goldstein CM, Penn MS, Hughes JW (2016) Effects of exercise on c-reactive protein in healthy patients and in patients with heart disease: a meta-analysis. Heart Lung J Crit Care 45:273–282

    Article  Google Scholar 

  114. Lavie CJ, Morshedi-Meibodi A, Milani RV (2008) Impact of cardiac rehabilitation on coronary risk factors, inflammation, and the metabolic syndrome in obese coronary patients. J Cardiometab Syndr 3:136–140

    Article  PubMed  Google Scholar 

  115. Lavie CJ, Milani RV, Artham SM, Lavie CJ, Milani RV, Artham SM, Patel DA, Ventura HO (2009) The obesity paradox, weight loss, and coronary disease. Am J Med 122:1106–1114

    Article  CAS  PubMed  Google Scholar 

  116. Ruiz JR, Ortega FB, Wärnberg J, Moreno LA, Carrero JJ, Gonzalez-Gross M et al (2008) Inflammatory proteins and muscle strength in adolescents: the Avena study. Arch Pediatr Adolesc Med 162:462–468

    Article  PubMed  Google Scholar 

  117. Sardeli AV, Tomeleri CM, Cyrino ES, Fernhall B, Cavaglieri CR, Chacon-Mikahil MPT (2018) Effect of resistance training on inflammatory markers of older adults: a meta-analysis. Exp Gerontol 111:188–196

    Article  PubMed  Google Scholar 

  118. Ramel A, Geirsdottir OG, Jonsson PV, Thorsdottiri I (2015) C-reactive protein and resistance exercise in community dwelling old adults. J Nutr Health Aging 19:792–796

    Article  CAS  PubMed  Google Scholar 

  119. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K et al (2010) Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes. J Am Med Assoc 304:2253–2262

    Article  CAS  Google Scholar 

  120. Swift DL, Johannsen NM, Earnest CP, Blair SN, Church TS (2012) The effect of exercise training modality on C-reactive protein in Type-2 diabetes. Med Sci Sports Exerc 44:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42:304–313

    Article  CAS  PubMed  Google Scholar 

  122. Lee JS, Kim CG, Seo TB, Kim HG, Yoon SJ (2015) Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin Exp Res 27:179–186

    Article  PubMed  Google Scholar 

  123. Mavros Y, Kay S, Simpson KA, Baker MK, Wang Y, Zhao RR et al (2014) Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J Cachexia Sarcopenia Muscle 5:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  124. Swift DL, Nevels TR, Landrine H, Lavie CJ, Newton RL, Das BM et al (2017) Abstract 32: racial differences in cardiorespiratory fitness between African and Caucasian Americans: a meta-analysis. Circulation 135:A32

    Google Scholar 

  125. Saffer H, Dave D, Grossman M, Leung LA (2013) Racial, ethnic, and gender differences in physical activity. J Hum Cap 7:378–410

    Article  PubMed  Google Scholar 

  126. Centers for Disease Control and Prevention (2019) QuickStats: percentage of adults who met Federal Guidelines for aerobic physical activity through leisure-time activity, by race/ethnicity—National Health Interview Survey, 2008–2017. MMWR Morb Mortal Wkly Rep 68:292. https://doi.org/10.15585/mmwr.mm6812a6

    Article  Google Scholar 

  127. Centers for Disease Control and Prevention (2016) QuickStats: Percentage of U.S. Adults Who Met the 2008 Federal Physical Activity Guidelines for Aerobic and Strengthening Activity, by Sex—National Health Interview Survey, 2000–2014. MMWR Morb Mortal Wkly Rep 65:485. https://doi.org/10.15585/mmwr.mm6518a9

    Article  Google Scholar 

  128. Centers for Disease Control and Prevention (2016) QuickStats: percentage of adults who met Federal Guidelines for aerobic physical activity, by poverty status — National Health Interview Survey, United States, 2014. MMWR Morb Mortal Wkly Rep 65:459. https://doi.org/10.15585/mmwr.mm6517a6

    Article  Google Scholar 

  129. WHO|What is Moderate-intensity and Vigorous-intensity Physical Activity? In: WHO. https://www.who.int/dietphysicalactivity/physical_activity_intensity/en/. Accessed 12 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Lavie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mendoza, M.V.F., Kachur, S.M., Lavie, C.J. (2022). The Effects of Exercise on Lipid Biomarkers. In: Guest, P.C. (eds) Physical Exercise and Natural and Synthetic Products in Health and Disease. Methods in Molecular Biology, vol 2343. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1558-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1558-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1557-7

  • Online ISBN: 978-1-0716-1558-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics