Skip to main content
Log in

Aerobic Exercise Improves Reverse Cholesterol Transport in Cholesteryl Ester Transfer Protein Transgenic Mice

  • Original Article
  • Published:
Lipids

Abstract

We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of 14C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [3H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [3H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [3H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

Transporters ABCA-1 and ABCG-1

AcLDL:

Acetylated LDL

Apo AI:

Apolipoprotein AI

Apo E:

Apolipoprotein E

B-E:

Low density lipoprotein receptor

CETP:

Cholesteryl ester transfer protein

CYP7A1:

7 alpha hydroxylase

CYP27A:

27 alpha hydroxylase

EC:

Esterified cholesterol

EDTA-PBS:

Ethylene diamine tetra acetic phosphate-buffered saline

FPLC:

Fast protein liquid chromatography

HDL:

High density lipoprotein

LCAT:

Lecithin cholesterol acyltransferase

LDL:

Low density lipoprotein

LRP:

LDL-receptor related protein

LXR:

Liver X receptor

LP:

Lipoprotein

RCT:

Reverse cholesterol transport

SR-BI:

Scavenger receptor class B type I

VLDL:

Very low density lipoprotein

References

  1. Lee IM, Hsieh CC, Paffenbarger RS Jr (1995) Exercise intensity and longevity in men. The Harvard Alumni Study. JAMA 273:1179–1184

    Article  PubMed  CAS  Google Scholar 

  2. Nordstrom CK, Dwyer KM, Merz NB, Shircore A, Dwyer JH (2003) Leisure time physical activity and early atherosclerosis: the Los Angeles atherosclerosis study. Am J Med 115:19–25

    Article  PubMed  Google Scholar 

  3. Ramachandran S, Penumetcha M, Merchant NK, Santanam N, Rong R, Parthasarathy S (2005) Exercise reduces preexisting atherosclerotic lesions in LDL receptor knock out mice. Atherosclerosis 178:33–38

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto Y, Adams V, Jacob S, Mangner N, Schuler G, Linke A (2010) Regular exercise training prevents aortic valve disease in low-density lipoprotein-receptor-deficient mice. Circulation 21:759–767

    Article  Google Scholar 

  5. Napoli C, Williams-Ignarro S, Nigris F, Lerman LO, D’Armiento FP, Crimi E, Byrns RE, Casamassimi A, Lanza A, Gombos F, Sica V (2006) Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. PNAS 13:10479–10484

    Article  Google Scholar 

  6. Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S (2001) Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vasc Biol 21:1681–1688

    Article  PubMed  CAS  Google Scholar 

  7. Wang X, Rader DJ (2007) Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol 22:368–372

    Article  PubMed  Google Scholar 

  8. Institute of Laboratory Animal Research CoLS (1996) National Research Council guide for the care and use of laboratory animals. In: Council NR (ed). National Academy Press, Washington (DC), p 124

  9. Lowry OH, Rosebrough NJ, Farr Al, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  10. Basu SK, Goldstein JL, Anderson RGW, Brown MS (1976) Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous hypercholesterolemia fibroblasts. Proc Natl Acad Sci 73:3178–3182

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ (2003) Overexpression of apolipoprotein A-1 promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 108:661–663

    Article  PubMed  CAS  Google Scholar 

  12. Folch J, Lees M, Stanley S (1957) A simple method for the isolation and purification of total lipids from animal’s tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  13. Escolà-Gil JC, Julve J, Marzal-Casacuberta A, Ordóñez-Llanos J, González-Sastre F, Blanco-Vaca F (2001) ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. J Lipid Res 42:241–248

    PubMed  Google Scholar 

  14. Gupta AK, Ross EA, Myers JN, Kashyap ML (1993) Increased reverse cholesterol transport in athletes. Metabolism 42:684–690

    Article  PubMed  CAS  Google Scholar 

  15. Olchawa B, Kingwell BA, Hoang A, Schneider L, Miyazaki O, Nestel P, Sviridov D (2004) Physical fitness and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 24:1087–1091

    Article  PubMed  CAS  Google Scholar 

  16. Wei C, Penumetcha M, Santanam N, Liu GY, Garelnabi M, Parthasarathy S (2005) Exercise might favor reverse cholesterol transport and lipoprotein clearance: potential mechanism for its anti-atherosclerotic effects. Biochim Biophys Acta 1723:124–127

    PubMed  CAS  Google Scholar 

  17. Wilund KR, Feeney LA, Tomayko EJ, Chung HR, Kim K (2008) Endurance exercise training reduces gallstone development in mice. J Appl Physiol 104:761–765

    Article  PubMed  CAS  Google Scholar 

  18. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote reverse cholesterol transport in vivo. J Clin Invest 117:2216–2224

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ (2005) Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 115:2870–2874

    Article  PubMed  CAS  Google Scholar 

  20. Mardones P, Quiñones V, Amigo L, Moreno M, Miquel JF, Schwarz M, Miettinen HE, Trigatti B, Krieger M, VanPatten S, Cohen DE, Rigotti A (2001) Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 42:170–180

    PubMed  CAS  Google Scholar 

  21. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ (2000) Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20:721–727

    PubMed  CAS  Google Scholar 

  22. Gauthier A, Lau P, Zha X, Milne R, McPherson R (2005) Cholesteryl ester transfer protein directly mediates selective uptake of high density lipoprotein cholesteryl esters by the liver. Arterioscler Thromb Vasc Biol 25:2177–2184

    Article  PubMed  CAS  Google Scholar 

  23. Vassiliou G, McPherson R (2004) Role of cholesteryl ester transfer protein in selective uptake of high density lipoprotein cholesteryl esters by adipocytes. J Lipid Res 5:1683–1693

    Article  Google Scholar 

  24. Harada LM, Amigo L, Cazita PM, Salerno AG, Rigotti AA, Quintão EC, Oliveira HC (2007) CETP expression enhances liver HDL-cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion. Atherosclerosis 191:313–318

    Article  PubMed  CAS  Google Scholar 

  25. Rotllan N, Calpe-Berdiel L, Guillaumet-Adkins A, Süren-Castillo S, Blanco-Vaca F, Escolà-Gil JC (2008) CETP activity variation in mice does not affect two major HDL antiatherogenic properties: macrophage-specific reverse cholesterol transport and LDL antioxidant protection. Atherosclerosis 196:505–513

    Article  PubMed  CAS  Google Scholar 

  26. Tchoua U, D'Souza W, Mukhamedova N, Blum D, Niesor E, Mizrahi J, Maugeais C, Sviridov D (2008) The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovascular Res 77:732–739

    Article  CAS  Google Scholar 

  27. Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ (2007) Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116:1267–1273

    Article  PubMed  CAS  Google Scholar 

  28. Harder C, Lau P, Meng A, Whitman SC, McPherson R (2007) Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol 27:858–864

    Article  PubMed  CAS  Google Scholar 

  29. Meissner M, Havinga R, Boverhof R, Kema I, Groen AK, Kuipers F (2010) Exercise enhances whole-body cholesterol turnover in mice. Med Sci Sports Exerc 42:1460–1468

    Article  PubMed  CAS  Google Scholar 

  30. Yasuda T, Grillot D, Bilheimer JT, Briand F, Delerive P, Huet S, Rader DJ (2010) Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 30(4):781–786

    Article  PubMed  CAS  Google Scholar 

  31. Sehayek E, Hazen SL (2008) Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol 28:1296–1297

    Article  PubMed  CAS  Google Scholar 

  32. Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM (2010) Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 12:96–102

    Article  PubMed  CAS  Google Scholar 

  33. Meissner M, Nijstad N, Kuipers F, Tietge UJ (2010) Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutr Metab 1:54

    Article  Google Scholar 

  34. Zhou H, Li Z, Silver DL, Jiang XC (2006) Cholesteryl ester transfer protein (CETP) expression enhances HDL cholesteryl ester liver delivery, which is independently of scavenger receptor BI, LDL receptor related protein and possibly LDL receptor. Biochim Biophys Acta 1761:1482–1488

    PubMed  CAS  Google Scholar 

  35. Calpe-Berdiel L, Rotllan N, Palomer X, Ribas V, Blanco-Vaca F, Escolà-Gil JC (2005) Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochim Biophys Acta 1738:6–9

    PubMed  CAS  Google Scholar 

  36. Couillard C, Després JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Bouchard C (2001) Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 21:1226–1232

    Article  PubMed  CAS  Google Scholar 

  37. Mukherjee M, Shetty KR (2004) Variations in high-density lipoprotein cholesterol in relation to physical activity and Taq 1B polymorphism of the cholesteryl ester transfer protein gene. Clin Genet 65:412–418

    Article  PubMed  CAS  Google Scholar 

  38. Sorlí JV, Corella D, Francés F, Ramírez JB, González JI, Guillén M, Portolés O (2006) The effect of the APOE polymorphism on HDL-C concentrations depends on the cholesterol ester transfer protein gene variation in a Southern European population. Clin Chim Acta 366:196–203

    Article  PubMed  Google Scholar 

  39. Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey T, Amar MJ, Fruchart-Najib J, Duverger N, Santamarina-Fojo S, Brewer HB Jr (2003) J Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res 44(2):296–302

    Article  PubMed  CAS  Google Scholar 

  40. Wellington CL, Brunham LR, Zhou S, Singaraja RR, Visscher H, Gelfer A, Ross C, James E, Liu G, Huber MT, Yang YZ, Parks RJ, Groen A, Fruchart-Najib J, Hayden MR (2003) Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res 44(2):1470–1480

    Article  PubMed  CAS  Google Scholar 

  41. Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL, Hayden MR, Maeda N, Parks JS (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115(5):1333–1342

    PubMed  CAS  Google Scholar 

  42. Singaraja RR, Stahmer B, Brundert M, Merkel M, Heeren J, Bissada N, Kang M, Timmins JM, Ramakrishnan R, Parks JS, Hayden MR, Rinninger F (2006) Hepatic ATP-binding cassette transporter A1 is a key molecule in high-density proprotein cholesteryl ester metabolism in mice. Arterioscler Thromb Vasc Biol 26(8):1821–1827

    Article  PubMed  CAS  Google Scholar 

  43. Ghanbari-Niaki A, Khabazian BM, Hossaini-Kakhak SA, Rahbarizadeh F, Hedayati M (2007) Treadmill exercise enhances ABCA1 expression in rat liver. Biochem Biophys Res Commun 361:841–846

    Article  PubMed  CAS  Google Scholar 

  44. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K (2008) Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc 40:1263–1270

    Article  PubMed  CAS  Google Scholar 

  45. Okabe TA, Shimada K, Hattori M, Murayama T, Yokode M, Kita T, Kishimoto C (2007) Swimming reduces the severity of atherosclerosis in apolipoprotein E deficient mice by antioxidant effects. Cardiovasc Res 74:537–545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de Sao Paulo—FAPESP [07/50387-8 to MP, 06/52702-5 to DDFM Rocco, 07/56654-8 to LS Okuda and 09/53412-9 to RS Pinto] and by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq [870248/1197-9 to DDFMR]. The authors are indebted to Dr. Marisa Dolhnikoff and Ana L B Silveira from the Pathology Museum, Faculty of Medical Sciences, University of Sao Paulo for helping with microscope analysis, and to Walter Campestre (LIM-16) and Antonio dos Santos Filho (LIM-17) for caring for the animals. The authors are thankful to Fundação Faculdade de Medicina and Laboratórios de Investigação Médica (LIM). Results of the present study do not constitute endorsement by ACSM.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Passarelli.

About this article

Cite this article

Rocco, D.D.F.M., Okuda, L.S., Pinto, R.S. et al. Aerobic Exercise Improves Reverse Cholesterol Transport in Cholesteryl Ester Transfer Protein Transgenic Mice. Lipids 46, 617–625 (2011). https://doi.org/10.1007/s11745-011-3555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3555-z

Keywords

Navigation