Skip to main content

Regulatory Non-Coding RNAs: An Overview

  • Protocol
  • First Online:
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2300))

Abstract

The discovery of new classes of non-coding RNAs has always been preceded or accompanied by technological breakthroughs, and these outstanding progresses in transcriptomics approaches enabled to regularly add new members to the list. From the first detection of tRNAs, through the revolution of miRNAs discovery, to the recent identification of eRNAs or the identification of new functions for already known ncRNAs, this introductive review provides a very concise historical and functional overview of most prominent small regulatory non-coding RNA families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holley RW, Apgar J, Doctor BP (1960) Separation of amino acid-specific “soluble”-fraction ribonucleic acids. Ann N Y Acad Sci 88:745–751

    Article  CAS  PubMed  Google Scholar 

  2. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Structure of a ribonucleic acid. Science 147(3664):1462–1465

    Article  CAS  PubMed  Google Scholar 

  3. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929. https://doi.org/10.1038/35103511

    Article  CAS  PubMed  Google Scholar 

  4. Busch H, Reddy R, Rothblum L, Choi YC (1982) SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem 51:617–654. https://doi.org/10.1146/annurev.bi.51.070182.003153

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg RA, Penman S (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol 38(3):289–304. https://doi.org/10.1016/0022-2836(68)90387-2

    Article  CAS  PubMed  Google Scholar 

  6. Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 76(11):5495–5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283(5743):220–224

    Article  CAS  PubMed  Google Scholar 

  8. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8(3):209–220. https://doi.org/10.1038/nrm2124

    Article  CAS  PubMed  Google Scholar 

  9. Marmier-Gourrier N, Clery A, Schlotter F, Senty-Segault V, Branlant C (2011) A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Res 39(22):9731–9745. https://doi.org/10.1093/nar/gkr675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clerget G, Bourguignon-Igel V, Marmier-Gourrier N, Rolland N, Wacheul L, Manival X, Charron C, Kufel J, Méreau A, Senty-Ségault V, Tollervey D, Lafontaine DLJ, Branlant C, Rederstorff M (2020) Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Res 48:3848–3868. https://doi.org/10.1093/nar/gkaa066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abel Y, Rederstorff M (2019) SnoRNAs and the emerging class of sdRNAs: multifaceted players in oncogenesis. Biochimie 164:17–21. https://doi.org/10.1016/j.biochi.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  12. Huttenhofer A, Kiefmann M, Meier-Ewert S, O'Brien J, Lehrach H, Bachellerie JP, Brosius J (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20(11):2943–2953. https://doi.org/10.1093/emboj/20.11.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5(10):1813–1824

    Article  CAS  PubMed  Google Scholar 

  14. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  15. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862. https://doi.org/10.1016/0092-8674(93)90530-4

    Article  CAS  PubMed  Google Scholar 

  16. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. https://doi.org/10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  17. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  18. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862. https://doi.org/10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  19. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864. https://doi.org/10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  20. Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34(6):696–709. https://doi.org/10.1016/j.molcel.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. https://doi.org/10.1126/science.1096781

    Article  CAS  PubMed  Google Scholar 

  22. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  23. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. https://doi.org/10.1126/science.1062961

    Article  CAS  PubMed  Google Scholar 

  24. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289. https://doi.org/10.1105/tpc.2.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  26. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32(4):519–528. https://doi.org/10.1016/j.molcel.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  27. Rother S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93(11):1905–1915. https://doi.org/10.1016/j.biochi.2011.07.032

    Article  CAS  PubMed  Google Scholar 

  28. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13(24):3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33. https://doi.org/10.1016/S0092-8674(00)80620-0

    Article  CAS  PubMed  Google Scholar 

  30. Braun JE, Huntzinger E, Izaurralde E (2013) The role of GW182 proteins in miRNA-mediated gene silencing. Adv Exp Med Biol 768:147–163. https://doi.org/10.1007/978-1-4614-5107-5_9

    Article  CAS  PubMed  Google Scholar 

  31. Eulalio A, Tritschler F, Izaurralde E (2009) The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15(8):1433–1442. https://doi.org/10.1261/rna.1703809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395. https://doi.org/10.1016/j.cell.2011.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiu H-S, Martínez MR, . Komissarova EV, Llobet-Navas D, Bansal M, Paull EO, Silva J, Yang X, Sumazin P, Califano A (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res 46:4354–4369. doi:https://doi.org/10.1093/nar/gky286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037. https://doi.org/10.1038/ng2079

    Article  CAS  PubMed  Google Scholar 

  35. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030. https://doi.org/10.1016/0092-8674(93)90279-y

    Article  CAS  PubMed  Google Scholar 

  36. Pasman Z, Been MD, Garcia-Blanco MA (1996) Exon circularization in mammalian nuclear extracts. RNA 2:603–610

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32:309–316. https://doi.org/10.1016/j.tig.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73:5609–5612. https://doi.org/10.1158/0008-5472.CAN-13-1568

    Article  CAS  PubMed  Google Scholar 

  40. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 4:e07540. https://doi.org/10.7554/eLife.07540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409. https://doi.org/10.1186/s13059-014-0409-

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  44. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207. https://doi.org/10.1038/nature04916

    Article  CAS  PubMed  Google Scholar 

  45. Chuma S, Pillai RS (2009) Retrotransposon silencing by piRNAs: ping-pong players mark their sub-cellular boundaries. PLoS Genet 5(12):e1000770. https://doi.org/10.1371/journal.pgen.1000770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258. https://doi.org/10.1038/nrm3089

    Article  CAS  PubMed  Google Scholar 

  47. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41(5):572–578. https://doi.org/10.1038/ng.312

    Article  CAS  PubMed  Google Scholar 

  48. Valen E, Preker P, Andersen PR, Zhao X, Chen Y, Ender C, Dueck A, Meister G, Sandelin A, Jensen TH (2011) Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat Struct Mol Biol 18(9):1075–1082. https://doi.org/10.1038/nsmb.2091

    Article  CAS  PubMed  Google Scholar 

  49. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844. https://doi.org/10.1038/nrg2683

    Article  CAS  PubMed  Google Scholar 

  50. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA (2008) Divergent transcription from active promoters. Science 322(5909):1849–1851. https://doi.org/10.1126/science.1162253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flynn RA, Almada AE, Zamudio JR, Sharp PA (2011) Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A 108(26):10460–10465. https://doi.org/10.1073/pnas.1106630108

    Article  PubMed  PubMed Central  Google Scholar 

  52. Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042. https://doi.org/10.1038/nature07747

    Article  CAS  PubMed  Google Scholar 

  53. van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, Nicolas A, Thermes C, Morillon A (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475(7354):114–117. https://doi.org/10.1038/nature10118

    Article  CAS  PubMed  Google Scholar 

  54. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037. https://doi.org/10.1038/nature07728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  56. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. https://doi.org/10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Yazgan O, Krebs JE (2007) Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochem Cell Biol 85(4):484–496. https://doi.org/10.1139/O07-061

    Article  CAS  PubMed  Google Scholar 

  58. Aalto AP, Pasquinelli AE (2012) Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 24(3):333–340. https://doi.org/10.1016/j.ceb.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei C-L, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384. https://doi.org/10.1371/journal.pbio.1000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187. https://doi.org/10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, Chun HB, Tough DF, Prinjha RK, Benner C, Glass CK (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51:310–325. https://doi.org/10.1016/j.molcel.2013.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R (2017) Intragenic enhancers attenuate host gene expression. Mol Cell 68:104–117.e6. https://doi.org/10.1016/j.molcel.2017.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alvarez-Dominguez JR, Knoll M, Gromatzky AA, Lodish HF (2017) The super-enhancer-derived alncRNA-EC7/Bloodlinc potentiates red blood cell development in trans. Cell Rep 19:2503–2514. https://doi.org/10.1016/j.celrep.2017.05.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National pour la Recherche Scientifique, the Université de Lorraine and the Région Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Rederstorff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Virciglio, C., Abel, Y., Rederstorff, M. (2021). Regulatory Non-Coding RNAs: An Overview. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 2300. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1386-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1386-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1385-6

  • Online ISBN: 978-1-0716-1386-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics