Skip to main content

Direct Infusion Mass Spectrometry for Complex Lipid Analysis

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

Direct infusion or “shotgun” mass spectrometry provides a fast strategy to measure different classes of lipids, combining rapid analysis and short idle time. In contrast to liquid chromatography–mass spectrometry (LC-MS), the lipids are infused into the mass spectrometer without prior separation by liquid chromatography. Ions are separated in the quadrupole of a tandem mass spectrometer, and after collision-induced dissociation fragments are quantified relative to internal standards in the third quadrupole or in the time-of-flight mass analyzer of a triple quadrupole or quadrupole time of flight (Q-TOF) mass spectrometer. Abundant lipids, that is, galactolipids and phospholipids in leaves, are measured in crude lipid extracts, while less abundant lipids can be measured after enrichment by solid-phase extraction. Here we describe protocols for the quantification of the major plant glycerolipids (galactolipids, phospholipids, diacylglycerol, and triacylglycerol) using nanospray direct infusion mass spectrometry. This provides a strategy for comprehensive, highly sensitive, high-throughput lipidomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slabas T (1997) Galactolipid biosynthesis genes and endosymbiosis. Trends Plant Sci 2(5):161–162. https://doi.org/10.1016/S1360-1385(97)01029-7

    Article  Google Scholar 

  2. Horn PJ, Korte AR, Neogi PB, Love E, Fuchs J, Strupat K, Borisjuk L, Shulaev V, Lee Y-J, Chapman KD (2012) Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell 24(2):622–636. https://doi.org/10.1105/tpc.111.094581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344. https://doi.org/10.1073/pnas.94.6.2339

    Article  PubMed  PubMed Central  Google Scholar 

  4. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002. https://doi.org/10.1074/jbc.M205375200

    Article  CAS  PubMed  Google Scholar 

  5. Yang SF, Freer S, Benson AA (1967) Transphosphatidylation by phospholipase D. J Biol Chem 242(3):477–484

    Article  CAS  Google Scholar 

  6. Roughan PG, Slack CR, Holland R (1978) Generation of phospholipid artefacts during extraction of developing soybean seeds with methanolic solvents. Lipids 13(7):497–503. https://doi.org/10.1007/BF02533620

    Article  CAS  Google Scholar 

  7. vom Dorp K, Dombrink I, Dörmann P (2013) Quantification of diacylglycerol by mass spectrometry. Methods Mol Biol 1009:43–54. https://doi.org/10.1007/978-1-62703-401-2_5

    Article  CAS  Google Scholar 

  8. Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142(1):28–39. https://doi.org/10.1104/pp.106.082115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wewer V, Dombrink I, vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52:1–16. https://doi.org/10.1194/jlr.D013987

    Article  CAS  Google Scholar 

  10. Wewer V, Dörmann P (2014) Determination of sterol lipids in plant tissues by gas chromatography and Q-TOF mass spectrometry. Methods Mol Biol 1153:115–133. https://doi.org/10.1007/978-1-4939-0606-2_8

    Article  CAS  PubMed  Google Scholar 

  11. Lippold F, vom Dorp K, Abraham M, Hölzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, Stymne S, Dörmann P (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24(5):2001–2014. https://doi.org/10.1105/tpc.112.095588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brands M, Wewer V, Keymer A, Gutjahr C, Dörmann P (2018) The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Plant J 95(2):219–232. https://doi.org/10.1111/tpj.13943

    Article  CAS  PubMed  Google Scholar 

  13. Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67:1907–1924. https://doi.org/10.1016/j.phytochem.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100. https://doi.org/10.1006/abio.2001.5178

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Evans JJ (2005) Examining the collision-induced decomposition spectra of ammoniated triglycerides as a function of fatty acid chain length and degree of unsaturation. I. the OXO/YOY series. Rapid Commun Mass Spectrom 19(18):2528–2538. https://doi.org/10.1002/rcm.2087

    Article  CAS  PubMed  Google Scholar 

  16. Gasulla F, vom Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. Plant J 75(5):726–741. https://doi.org/10.1111/tpj.12241

    Article  CAS  PubMed  Google Scholar 

  17. Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391. https://doi.org/10.1111/tra.12187

    Article  CAS  PubMed  Google Scholar 

  18. Moreau RA, Doehlert DC, Welti R, Isaac G, Roth M, Tamura P, Nuñez A (2008) The identification of mono-, di-, tri-, and tetragalactosyl-diacylglycerols and their natural estolides in oat kernels. Lipids 43(6):533–548. https://doi.org/10.1007/s11745-008-3181-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gage DA, Huang ZH, Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobacter sphaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27(8):632–636. https://doi.org/10.1007/BF02536123

    Article  CAS  PubMed  Google Scholar 

  20. Welti R, Wang X, Williams TD (2003) Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 314(1):149–152. https://doi.org/10.1016/s0003-2697(02)00623-1

    Article  CAS  PubMed  Google Scholar 

  21. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B 823(1):26–36. https://doi.org/10.1016/j.jchromb.2005.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the DFG for funding of MS equipment (Forschungsgroßgeräte nach Art. 91b GG). This work was partially funded by the DFG SFB645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gutbrod, K., Peisker, H., Dörmann, P. (2021). Direct Infusion Mass Spectrometry for Complex Lipid Analysis. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics