Skip to main content

MicroRNAs and Heat Shock Proteins in Breast Cancer Biology

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Lakhani S, Ellis IO, Schnitt SJ et al (2012) WHO classification of Tumours of the breast. In: En: WHO classification of Tumours. Volumen 4. IARC WHO Classification of Tumours, vol 4, 4th edn. IARC, Lyon cedex, pp 22–23

    Google Scholar 

  3. Prat A, Pineda E, Adamo B et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24:S26–S35

    Article  PubMed  Google Scholar 

  4. Pusztai L, Mazouni C, Anderson K et al (2006) Molecular classification of breast cancer: limitations and potential. Oncologist 11:868–877

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Zhang X-S, Zhang S (2014) Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep 4:4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai X, Li T, Bai Z et al (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5:2929–2943

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang P, Tse GM (2016) Immunohistochemical surrogates for molecular classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med 140:806–814

    Article  CAS  PubMed  Google Scholar 

  8. Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5:412–424

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21:100–107

    Article  CAS  PubMed  Google Scholar 

  10. Milioli HH, Tishchenko I, Riveros C et al (2017) Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC Med Genet 10:19

    Google Scholar 

  11. Tutar L, Tutar Y (2010) Heat shock proteins; an overview. Curr Pharm Biotechnol 11:216–222

    Article  CAS  PubMed  Google Scholar 

  12. Madadi S, Soleimani M (2019) Evaluation of miR-16 as an internal control in the patients with breast cancer. Hum Pathol 85:329

    Article  CAS  PubMed  Google Scholar 

  13. Ni Q, Stevic I, Pan C et al (2018) Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Sci Rep 8:12974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ren C, Chen H, Han C et al (2016) High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer. J Cancer Res Clin Oncol 142:2489–2496

    Article  CAS  PubMed  Google Scholar 

  15. Yang Z, Zhuang Q, Hu G et al (2019) MORC4 is a novel breast cancer oncogene regulated by miR-193b-3p. J Cell Biochem 120:4634–4643

    Article  CAS  PubMed  Google Scholar 

  16. Meng F, Li Z, Zhang Z et al (2018) MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics 8:2862–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang ZK, Meng FG, Zhang ZQ et al (2018) MicroRNA-193b-3p regulates matrix metalloproteinase 19 expression in interleukin-1β-induced human chondrocytes. J Cell Biochem 119:4775–4782

    Article  CAS  PubMed  Google Scholar 

  18. Roth SA, Hald ØH, Fuchs S, Løkke C et al (2018) MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1, MCL-1 and MYCN. Oncotarget 9:18160–18179

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mets E, Van der Meulen J, Van Peer G et al (2015) MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia 29:798–806

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Li Q, Xu J et al (2016) The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling. Sci Rep 6:19910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu CG, Song J, Zhang YQ et al (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10:2395–2400

    Article  CAS  PubMed  Google Scholar 

  22. Song B, Du J, Song DF et al (2018) Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer. Biol Res 51:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Chen L, Wu Z et al (2016) miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer 16:826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang L, Chen X, Liu B et al (2018) MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol Lett 15:984–990

    PubMed  Google Scholar 

  25. Zo RB, Long Z (2018) MiR-124-3p suppresses bladder cancer by targeting DNA methyltransferase 3B. J Cell Physiol 234:464–474

    Article  PubMed  CAS  Google Scholar 

  26. Wang P, Zhang L, Zhang J et al (2018) MicroRNA-124-3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1. Exp Ther Med 15:1385–1393

    CAS  PubMed  Google Scholar 

  27. Kang K, Peng X, Zhang X et al (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 288:25414–25427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang D, Zhang H, Li M et al (2014) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114:67–78

    Article  CAS  PubMed  Google Scholar 

  29. An F, Gong G, Wang Y et al (2017) MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget 8:114065–114071

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang C, Wu K, Wang S et al (2018) Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p. J Cell Biochem 119:5646–5656

    Article  CAS  PubMed  Google Scholar 

  31. Zhou S, Yu L, Xiong M et al (2018) LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem Biophys Res Commun 495:1822–1832

    Article  CAS  PubMed  Google Scholar 

  32. Chai L, Kang XJ, Sun ZZ et al (2018) MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res 10:989–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng C, Zhang L, Sun Y et al (2018) GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. Biomed Pharmacother 101:945–952

    Article  CAS  PubMed  Google Scholar 

  34. Jin Y, Wang M, Hu H et al (2018) Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling. Int J Biol Macromol 117:445–453

    Article  CAS  PubMed  Google Scholar 

  35. Kong F, Ma J, Yang H et al (2018) Long non-coding RNA PVT1 promotes malignancy in human endometrial carcinoma cells through negative regulation of miR-195-5p. Biochim Biophys Acta, Mol Cell Res. https://doi.org/10.1016/j.bbamcr.2018.07.008

  36. Li M, Ren CX, Zhang JM et al (2018) The effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling. Cell Physiol Biochem 50:1398–1413

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Wang L, Yao X et al (2017) miR-195-5p is critical in REGγ-mediated regulation of wnt/β-catenin pathway in renal cell carcinoma. Oncotarget 8:63986–64000

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang K, Sun Y, Tao W et al (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Ren Y, Liu R et al (2017) miR-195-5p suppresses the proliferation, migration, and invasion of Oral squamous cell carcinoma by targeting TRIM14. Biomed Res Int 2017:7378148

    PubMed  PubMed Central  Google Scholar 

  40. Tagoma A, Alnek K, Kirss A et al (2018) MicroRNA profiling of second trimester maternal plasma shows upregulation of miR-195-5p in patients with gestational diabetes. Gene 672:137–142

    Article  CAS  PubMed  Google Scholar 

  41. Musumeci M, Coppola V, Addario A et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30:4231–4242

    Article  CAS  PubMed  Google Scholar 

  42. Sandrim VC, Eleuterio N, Pilan E et al (2016) Plasma levels of increased miR-195-5p correlates with the sFLT-1 levels in preeclampsia. Hypertens Pregnancy 35:150–158

    Article  CAS  PubMed  Google Scholar 

  43. Kontos CK, Tsiakanikas P, Avgeris M et al (2017) miR-15a-5p, a novel prognostic biomarker, predicting recurrent colorectal adenocarcinoma. Mol Diagn Ther 21:453–464

    Article  CAS  PubMed  Google Scholar 

  44. Ergun S, Güney S, Temiz E et al (2018) Significance of miR-15a-5p and CNKSR3 as novel prognostic biomarkers in non-small cell lung cancer. Anti Cancer Agents Med Chem 18:1695–1701

    Article  CAS  Google Scholar 

  45. Wang ZM, Wan XH, Sang GY et al (2017) miR-15a-5p suppresses endometrial cancer cell growth via Wnt/β-catenin signaling pathway by inhibiting WNT3A. Eur Rev Med Pharmacol Sci 21:4810–4818

    PubMed  Google Scholar 

  46. Chen D, Wu D, Shao K et al (2017) MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am J Transl Res 9:4308–4316

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng X, Li A, Zhao L et al (2013) Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun 437:625–631

    Article  CAS  PubMed  Google Scholar 

  48. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen Y, Chen J, Liu Y et al (2015) Plasma miR-15b-5p, miR-338-5p, and miR-764 as biomarkers for hepatocellular carcinoma. Med Sci Monit 21:1864–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Hou N, Wang X et al (2015) miR-15b-5p induces endoplasmic reticulum stress and apoptosis in human hepatocellular carcinoma, both in vitro and in vivo, by suppressing Rab1A. Oncotarget 6:16227–16238

    Article  PubMed  PubMed Central  Google Scholar 

  51. Weng Y, Shen Y, He Y et al (2018) The miR-15b-5p/PDK4 axis regulates osteosarcoma proliferation through modulation of the Warburg effect. Biochem Biophys Res Commun 503:2749–2757

    Article  CAS  PubMed  Google Scholar 

  52. Xia L, Zhang D, Du R et al (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123:372–379

    Article  CAS  PubMed  Google Scholar 

  53. Zhao C, Li Y, Chen G et al (2017) Overexpression of miR-15b-5p promotes gastric cancer metastasis by regulating PAQR3. Oncol Rep 38:352–358

    Article  CAS  PubMed  Google Scholar 

  54. Sun L-N, Zhi Z, Chen L-Y et al (2017) SIRT1 suppresses colorectal cancer metastasis by transcriptional repression of miR-15b-5p. Cancer Lett 409:104–115

    Article  CAS  PubMed  Google Scholar 

  55. Mei Z, Su T, Ye J et al (2015) The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res 183:196–207

    Article  CAS  PubMed  Google Scholar 

  56. Yang M, Chen Y, Chen L et al (2016) miR-15b-AGO2 play a critical role in HTR8/SVneo invasion and in a model of angiogenesis defects related to inflammation. Placenta 41:62–73

    Article  CAS  PubMed  Google Scholar 

  57. Cheng Y, Xiang G, Meng Y et al (2016) MiRNA-183-5p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting the PDCD4. Reprod Biol 16:225–233

    Article  PubMed  Google Scholar 

  58. Yan H, Sun BM, Zhang YY et al (2018) Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int J Mol Med 42:2469–2480

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu M, Xue Y, Zheng J et al (2017) Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer 16:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weber DG, Casjens S, Johnen G et al (2014) Combination of MiR-103a-3p and mesothelin improves the biomarker performance of malignant mesothelioma diagnosis. PLoS One 9:e114483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kim DS, Lee SY, Lee JH et al (2015) MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells. Exp Mol Med 47:e172

    Article  CAS  PubMed  Google Scholar 

  63. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653

    Article  CAS  PubMed  Google Scholar 

  64. Zhang SY, Surapureddi S, Coulter S et al (2012) Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol Pharmacol 82:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li J, Lai Y, Ma J et al (2017) miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 17:745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bobbili MR, Mader RM, Grillari J et al (2017) OncomiR-17-5p: alarm signal in cancer? Oncotarget 8:71206–71222

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fu F, Jiang W, Zhou L et al (2018) Circulating Exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Li J, Dai L et al (2018) MiR-17-5p may serve as a novel predictor for breast cancer recurrence. Cancer Biomark 22:721–726

    Article  CAS  PubMed  Google Scholar 

  69. Pullamsetti SS, Doebele C, Fischer A et al (2012) Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185:409–419

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Wang X, Cheng J et al (2016) MicroRNA-20a-5p targets RUNX3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep 36:3379–3386

    Article  PubMed  CAS  Google Scholar 

  71. Bai X, Han G, Liu Y et al (2018) MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed Pharmacother 103:1482–1489

    Article  CAS  PubMed  Google Scholar 

  72. Calvano Filho CM, Calvano-Mendes DC, Carvalho KC et al (2014) Triple-negative and luminal a breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumour Biol 35:7733–7741

    Article  CAS  PubMed  Google Scholar 

  73. Brock M, Samillan VJ, Trenkmann M et al (2014) AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur Heart J 35:3203–3211

    Article  CAS  PubMed  Google Scholar 

  74. Zeng Y, Pan Y, Liu H et al (2014) MiR-20a regulates the PRKG1 gene by targeting its coding region in pulmonary arterial smooth muscle cells. FEBS Lett 588:4677–4685

    Article  CAS  PubMed  Google Scholar 

  75. Li X, Han X, Yang J et al (2018) Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 34:16–21

    PubMed  Google Scholar 

  76. Jiang L, Shi S, Shi Q et al (2018) MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2α in cervical cancer under hypoxic conditions. Oncol Res 26:1055–1062

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li Y-Y, Shao J-P, Zhang S-P et al (2018) miR-519d-3p inhibits cell proliferation and invasion of gastric cancer by downregulating B-cell lymphoma 6. Cytogenet Genome Res 154:12–19

    Article  CAS  PubMed  Google Scholar 

  78. Fu Y, Liu X, Chen Q et al (2018) Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. J Exp Clin Cancer Res 37:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jiang T, Li M, Li Q et al (2017) MicroRNA-98-5p inhibits cell proliferation and induces cell apoptosis in hepatocellular carcinoma via targeting IGF2BP1. Oncol Res 25:1117–1127

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu H, Wei M, Wang G (2018) miR-98-5p promotes apoptosis and inhibits migration by reducing the level of STAT3 in A549 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 34:522–527

    PubMed  Google Scholar 

  81. Wu S, Huang S, Ding J et al (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308

    Article  CAS  PubMed  Google Scholar 

  82. Maimaiti A, Maimaiti A, Yang Y et al (2016) MiR-106b exhibits an anti-angiogenic function by inhibiting STAT3 expression in endothelial cells. Lipids Health Dis 15:51–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hua Z, Lv Q, Ye W et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tao J, Cong H, Wang H et al (2018) MiR-30a-5p inhibits osteosarcoma cell proliferation and migration by targeting FOXD1. Biochem Biophys Res Commun 503:1092–1097

    Article  CAS  PubMed  Google Scholar 

  86. Ye YY, Mei JW, Xiang SS et al (2018) MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis 9:410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ruan P, Tao Z, Tan A (2018) Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci Rep 38:BSR20171027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang S, Liu Q, Zhang Q et al (2017) MicroRNA-30a-5p suppresses proliferation, invasion and tumor growth of hepatocellular cancer cells via targeting FOXA1. Oncol Lett 14:5018–5026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chung Y-H, Li S-C, Kao Y-H et al (2017) MiR-30a-5p inhibits epithelial-to-mesenchymal transition and upregulates expression of tight junction protein Claudin-5 in human upper tract urothelial carcinoma cells. Int J Mol Sci 18:1826

    Article  PubMed Central  CAS  Google Scholar 

  90. Li L, Kang L, Zhao W et al (2017) miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett 400:89–98

    Article  CAS  PubMed  Google Scholar 

  91. Li W, Liu C, Zhao C et al (2016) Downregulation of β3 integrin by miR-30a-5p modulates cell adhesion and invasion by interrupting Erk/Ets-1 network in triple-negative breast cancer. Int J Oncol 48:1155–1164

    Article  CAS  PubMed  Google Scholar 

  92. Jia Z, Wang K, Wang G et al (2013) MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7. PLoS One 8:e55008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Roy A, Zhang M, Saad Y et al (2013) Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol 305:C1021–C1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen DB, Wang W (2013) Human placental microRNAs and preeclampsia. Biol Reprod 88:130

    PubMed  PubMed Central  Google Scholar 

  95. Wong PF, Jamal J, Tong KL et al (2017) Deregulation of hsa-miR-20b expression in TNF-α-induced premature senescence of human pulmonary microvascular endothelial cells. Microvasc Res 114:26–33

    Article  CAS  PubMed  Google Scholar 

  96. Wang H, Hu Z, Chen L (2018) Enhanced plasma miR-26a-5p promotes the progression of bladder cancer via targeting PTEN. Oncol Lett 16:4223–4228

    PubMed  PubMed Central  Google Scholar 

  97. Liang L, Zeng JH, Wang JY et al (2017) Down-regulation of miR-26a-5p in hepatocellular carcinoma: a qRT-PCR and bioinformatics study. Pathol Res Pract 213:1494–1509

    Article  CAS  PubMed  Google Scholar 

  98. Chang L, Li K, Guo T (2017) miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin Transl Onco 19:695–703

    Article  CAS  Google Scholar 

  99. Miyamoto K, Seki N, Matsushita R et al (2016) Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer 115:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leeper NJ, Raiesdana A, Kojima Y et al (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cerna K, Oppelt J, Chochola V et al (2019) MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia 33:403–414

    Article  CAS  PubMed  Google Scholar 

  102. Wang P, Xu J, Hou Z et al (2016) miRNA-34a promotes proliferation of human pulmonary artery smooth muscle cells by targeting PDGFRA. Cell Prolif 49:484–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110

    Article  CAS  PubMed  Google Scholar 

  104. Xu Q, Seeger FH, Castillo J et al (2012) Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol 59:2107–2117

    Article  CAS  PubMed  Google Scholar 

  105. Zhao T, Li J, Chen AF (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299:E110–E116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pan J, Zhou C, Zhao X et al (2018) A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep 8:16699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Frixa T, Sacconi A, Cioce M et al (2018) MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis 39:293–304

    Article  CAS  PubMed  Google Scholar 

  108. Breunig C, Erdem N, Bott A et al (2018) TGFβ1 regulates HGF-induced cell migration and hepatocyte growth factor receptor MET expression via C-ets-1 and miR-128-3p in basal-like breast cancer. Mol Oncol 12:1447–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou J, He Z, Guo L et al (2018) MiR-128-3p directly targets VEGFC/VEGFR3 to modulate the proliferation of lymphatic endothelial cells through Ca(2+) signaling. Int J Biochem Cell Biol 102:51–58

    Article  CAS  PubMed  Google Scholar 

  110. Carrettiero DC, Hernandez I, Neveu P et al (2009) The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci 29:2151–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wagschal A, Najafi-Shoushtari SH, Wang L et al (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21:1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang G, Zhou H, Xiao H et al (2014) MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci 59:98–107

    Article  CAS  PubMed  Google Scholar 

  114. Al-Nakhle H, Burns PA, Cummings M et al (2010) Estrogen receptor {beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res 70:4778–4784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Tutar .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data S1

(XLSX 652 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yildiz, M.T., Tutar, L., Giritlioğlu, N.I., Bayram, B., Tutar, Y. (2022). MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics