Skip to main content

Advertisement

Log in

Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p

  • Research Article
  • Published:
Tumor Biology

Abstract

New concepts in epigenetics, microRNAs, and gene expression analysis have significantly enhanced knowledge of cancer pathogenesis over the last decade. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression by base pairing with target messenger RNAs (mRNAs), resulting in the repression of translation or the degradation of mRNA. To compare the carcinogenic process in tumors with different prognoses, we used real-time RT-PCR to evaluate the miRNA expression profiles of 24 triple-negative breast invasive ductal carcinoma, 20 luminal A breast invasive ductal carcinoma, and 13 normal breast parenchyma controls. We extracted total RNA from tissues fixed in formol and embedded in paraffin (FFPE). Results revealed the upregulation of miR-96-5p (9.35-fold; p = 0.000115), miR-182-5p (7.75-fold; p = 0.000033), miR-7-5p (6.71-fold; p = 0.015626), and miR-21-5p (6.10-fold; p = 0.000000) in tumors group. In addition, the expression of miR-125b-5p (4.49-fold; p = 0.000000) and miR-205-5p (4.36-fold; p = 0.006098) was downregulated. When the expression profiles of triple-negative and luminal A tumors were compared, there was enhanced expression of miR-17-5p (4.27-fold; p = 0.000664), miR-18a-5p (9.68-fold; p = 0.000545), and miR-20a-5 (4.07-fold; p = 0.001487) in the triple-negative tumors compared with luminal A. These data suggest that there is a similar regulation of certain miRNAs in triple-negative and luminal A tumors. However, it is possible that differences in the expression of miR-17-92 cluster will explain the phenotypic differences between these molecular tumor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khoshnaw SM, Green AR, Powe DG, Ellis IO. MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol. 2009;62:422–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microRNA in cancer and apoptosis. Biol Rev. 2009;84:55–71.

    Article  PubMed  Google Scholar 

  3. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–60.

    Article  CAS  PubMed  Google Scholar 

  4. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation fator 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102:16961–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006;13(12):1108–14.

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, et al. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One. 2013;8:e54213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28(10):1684–91.

    Article  PubMed  Google Scholar 

  8. Sørliea T, Perou CM, Tibshirani R, Turid A, Geislerg S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  Google Scholar 

  9. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  CAS  PubMed  Google Scholar 

  10. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One. 2010;5:e15797.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 2013;19:230–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci. 2009;106:1814–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70:367–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cho WC, Chow AS, Au JS. Restoration of tumour supressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 2009;45:2197–206.

    Article  CAS  PubMed  Google Scholar 

  16. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.

    CAS  PubMed  Google Scholar 

  17. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer. 2009;9:401.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41:210–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sun Y, Fang R, Li C, Li L, Li F, Ye X, et al. Hsa-miR-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun. 2010;396:501–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X, et al. MicroRNA-182 targets cyclic adenosine monophosphate responsive elemento binding protein 1 (CREB1) and suppresses cell growth in human gastric adenocarcinoma. FEBS J. 2012;279:1252–60.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, et al. Mir-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol. 2012;228(2):204–15.

    Article  CAS  PubMed  Google Scholar 

  22. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, et al. Pleiotropic effects of miR-183 ~ 96 ~ 182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol. 2012;123:539–52.

    Article  CAS  PubMed  Google Scholar 

  23. Giles KM, Brown RA, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun. 2013;430:706–10.

    Article  CAS  PubMed  Google Scholar 

  24. Ozgün A. MicroRNA-21 as an indicator of aggressive phenotype in breast cancer. Onkologie. 2013;36:115–8.

    Article  PubMed  Google Scholar 

  25. Li J, Zhang Y, Zhang W, Jia S, Tian R, Kang Y, et al. Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int J Surg Oncol. 2013;2013:875078.

    PubMed Central  PubMed  Google Scholar 

  26. Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-KB- dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012;287:21783–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hong L, Yang J, Han Y, Lu Q, Cao J, Syed L. High expression of miR-210 predicts poor survival in patients with breast cancer: a meta-analysis. Gene. 2012;507:135–8.

    Article  CAS  PubMed  Google Scholar 

  28. Toyama T, Kondo N, Endo Y, Sugiura H, Yoshimoto N, Iwasa M, et al. High expression of microRNA-210 is an independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients. Jpn J Clin Oncol. 2012;42:256–63.

    Article  PubMed  Google Scholar 

  29. Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Piovan C, Palmieri D, Di Leva G, Braccioli L, Casalini P, Nuovo G, et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol. 2012;6:458–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mahamodhossen YA, Liu W, Rong-Rong Z. Triple-negative breast cancer: new perspectives for novel therapies. Med Oncol. 2013;30:653.

    Article  PubMed  Google Scholar 

  33. Li H, Bian C, Liao L, Li J, Zhao RC. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat. 2011;126:565–75.

    Article  CAS  PubMed  Google Scholar 

  34. Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ, et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res. 2013;41:9688–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kyounghyun K, Gayathri C, Syng-ook L, Daisuke Y, Sastre-Garau X, Pierre-Antoine D, et al. Identification of oncogenic microrna-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012;31(8):1034–44.

    Article  Google Scholar 

  36. Zuoren Y, Chenguang W, Min W, Zhiping L, Mathew CC, Manran L, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–17.

    Article  Google Scholar 

  37. Zuoren Y, Nicole EW, Jie Z, Sanjay K, Min W, Yang L, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. PNAS. 2010;107(18):8231–6.

    Article  Google Scholar 

  38. Zhang ZW, An Y, Teng CB. The roles of miR-17-92 cluster in mammal development and tumorigenesis. Yi Chuan. 2009;31:1094–100.

    Article  CAS  PubMed  Google Scholar 

  39. Guo X, Yang C, Qian X, Lei T, Li Y, Shen H, et al. Estrogen receptor α regulates ATM expression through miRNAs in breast cancer. Clin Cancer Res. 2013;19:4994–5002.

    Article  CAS  PubMed  Google Scholar 

  40. Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 2009;28:3926–36.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshimoto N, Toyama T, Takahashi S, Sugiura H, Endo Y, Iwasa M, et al. Distinct expressions of microRNAs that directly target estrogen receptor α in human breast cancer. Breast Cancer Res Treat. 2011;130:331–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jonsdottir K, Janssen SR, Da Rosa FC, Gudlaugsson E, Skaland I, Baak JP, et al. Validation of expression patterns for nine miRNAs in 204 lymph-node negative breast cancers. PLoS One. 2012;7:e48692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Leandro C, Georgios G, Jimmy J, Coombesa RC, Walter L, Paul T, et al. The estrogen receptor-induced microRNA signature regulates itself and its transcriptional response. PNAS. 2009;106(37):15732–7.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Fundação de Amparo à Pesquisa do Estado de São paulo—FAPESP, São Paulo-SP, Brazil.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Carvalho Calvano-Mendes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvano Filho, C.M.C., Calvano-Mendes, D.C., Carvalho, K.C. et al. Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumor Biol. 35, 7733–7741 (2014). https://doi.org/10.1007/s13277-014-2025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2025-7

Keywords

Navigation